Simple control for complex pandemics: the impact of testing and contact tracing on heterogeneous networks


Abstract in English

Amidst the current COVID-19 pandemic, quantifying the effects of strategies that mitigate the spread of infectious diseases is critical. This article presents a compartmental model that addresses the role of random viral testing, follow-up contact tracing, and subsequent isolation of infectious individuals to stabilize the spread of a disease. We propose a branching model and an individual (or agent) based model, both of which capture the stochastic, heterogeneous nature of interactions within a community. The branching model is used to derive new analytical results for the trade-offs between the different mitigation strategies, with the surprising result that a communitys resilience to disease outbreaks is independent of its underlying network structure.

Download