No Arabic abstract
The development of reusable artificial intelligence (AI) models for wider use and rigorous validation by the community promises to unlock new opportunities in multi-messenger astrophysics. Here we develop a workflow that connects the Data and Learning Hub for Science, a repository for publishing AI models, with the Hardware Accelerated Learning (HAL) cluster, using funcX as a universal distributed computing service. Using this workflow, an ensemble of four openly available AI models can be run on HAL to process an entire months worth (August 2017) of advanced Laser Interferometer Gravitational-Wave Observatory data in just seven minutes, identifying all four all four binary black hole mergers previously identified in this dataset and reporting no misclassifications. This approach combines advances in AI, distributed computing, and scientific data infrastructure to open new pathways to conduct reproducible, accelerated, data-driven discovery.
The field of transient astronomy has seen a revolution with the first gravitational-wave detections and the arrival of multi-messenger observations they enabled. Transformed by the first detection of binary black hole and binary neutron star mergers, computational demands in gravitational-wave astronomy are expected to grow by at least a factor of two over the next five years as the global network of kilometer-scale interferometers are brought to design sensitivity. With the increase in detector sensitivity, real-time delivery of gravitational-wave alerts will become increasingly important as an enabler of multi-messenger followup. In this work, we report a novel implementation and deployment of deep learning inference for real-time gravitational-wave data denoising and astrophysical source identification. This is accomplished using a generic Inference-as-a-Service model that is capable of adapting to the future needs of gravitational-wave data analysis. Our implementation allows seamless incorporation of hardware accelerators and also enables the use of commercial or private (dedicated) as-a-service computing. Based on our results, we propose a paradigm shift in low-latency and offline computing in gravitational-wave astronomy. Such a shift can address key challenges in peak-usage, scalability and reliability, and provide a data analysis platform particularly optimized for deep learning applications. The achieved sub-millisecond scale latency will also be relevant for any machine learning-based real-time control systems that may be invoked in the operation of near-future and next generation ground-based laser interferometers, as well as the front-end collection, distribution and processing of data from such instruments.
Several km-scale gravitational-wave detectors have been constructed world wide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.
We present an application of anomaly detection techniques based on deep recurrent autoencoders to the problem of detecting gravitational wave signals in laser interferometers. Trained on noise data, this class of algorithms could detect signals using an unsupervised strategy, i.e., without targeting a specific kind of source. We develop a custom architecture to analyze the data from two interferometers. We compare the obtained performance to that obtained with other autoencoder architectures and with a convolutional classifier. The unsupervised nature of the proposed strategy comes with a cost in terms of accuracy, when compared to more traditional supervised techniques. On the other hand, there is a qualitative gain in generalizing the experimental sensitivity beyond the ensemble of pre-computed signal templates. The recurrent autoencoder outperforms other autoencoders based on different architectures. The class of recurrent autoencoders presented in this paper could complement the search strategy employed for gravitational wave detection and extend the reach of the ongoing detection campaigns.
General Relativity predicts only two tensor polarization modes for gravitational waves while at most six possible polarization modes of gravitational waves are allowed in the general metric theory of gravity. The number of polarization modes is totally determined by the specific modified theory of gravity. Therefore, the determination of polarization modes can be used to test gravitational theory. We introduce a concrete data analysis pipeline for a single space-based detector such as LISA to detect the polarization modes of gravitational waves. Apart from being able to detect mixtures of tensor and extra polarization modes, this method also has the added advantage that no waveform model is needed and monochromatic gravitational waves emitted from any compact binary system with known sky position and frequency can be used. We apply the data analysis pipeline to the reference source J0806.3+1527 of TianQin with 90-days simulation data, and we show that $alpha$ viewed as an indicative of the intrinsic strength of the extra polarization component relative to the tensor modes can be limited below 0.5 for LISA and below 0.2 for Taiji. We investigate the possibility to detect the nontensorial polarization modes with the combined network of LISA, TianQin and Taiji and find that $alpha$ can be limited below 0.2.
A brief history and various themes of mid-frequency gravitational wave detection are presented more or less following historical order -- Laser Interferometry, Atom Interferometry (AI), Torsion Bar Antenna (TOBA), and Superconducting Omni-directional Gravitational Radiation Observatory (SOGRO). Both Earth-based and Space-borne concepts are reviewed with outlook on expected astrophysical sources