No Arabic abstract
We study the $C^*$-algebra $mathbb{E}_{mathscr{M}}$ of a smooth 4-dimensional manifold $mathscr{M}$ introduced by Gabor Etesi. It is proved that the $mathbb{E}_{mathscr{M}}$ is a stationary AF-algebra. We calculate the topological and smooth invariants of $mathscr{M}$ in terms of the K-theory of the $C^*$-algebra $mathbb{E}_{mathscr{M}}$. Using Gompfs Stable Diffeomorphism Theorem, it is shown that all smoothings of $mathscr{M}$ form a torsion abelian group. The latter is isomorphic to the Brauer group of a number field associated to the K-theory of $mathbb{E}_{mathscr{M}}$.
We initiate the study of real $C^*$-algebras associated to higher-rank graphs $Lambda$, with a focus on their $K$-theory. Following Kasparov and Evans, we identify a spectral sequence which computes the $mathcal{CR}$ $K$-theory of $C^*_{mathbb R} (Lambda, gamma)$ for any involution $gamma$ on $Lambda$, and show that the $E^2$ page of this spectral sequence can be straightforwardly computed from the combinatorial data of the $k$-graph $Lambda$ and the involution $gamma$. We provide a complete description of $K^{CR}(C^*_{mathbb R}(Lambda, gamma))$ for several examples of higher-rank graphs $Lambda$ with involution.
We realize the Jiang-Su algebra, all UHF algebras, and the hyperfinite II$_{1}$ factor as Fraisse limits of suitable classes of structures. Moreover by means of Fraisse theory we provide new examples of AF algebras with strong homogeneity properties. As a consequence of our analysis we deduce Ramsey-theoretic results about the class of full-matrix algebras.
We develop methods for computing graded K-theory of C*-algebras as defined in terms of Kasparov theory. We establish grad
Exploiting the graph product structure and results concerning amalgamated free products of C*-algebras we provide an explicit computation of the K-theoretic invariants of right-angled Hecke C*-algebras, including concrete algebraic representants of a basis in K-theory. On the way, we show that these Hecke algebras are KK-equivalent with their undeformed counterparts and satisfy the UCT. Our results are applied to study the isomorphism problem for Hecke C*-algebras, highlighting the limits of K-theoretic classification, both for varying Coxeter type as well as for fixed Coxeter type.
We present a detailed exposition (for a Dynamical System audience) of the content of the paper: R. Exel and A. Lopes, $C^*$ Algebras, approximately proper equivalence relations and Thermodynamic Formalism, {it Erg. Theo. and Dyn. Syst.}, Vol 24, pp 1051-1082 (2004). We show only the uniqueness of the beta-KMS (in a certain C*-Algebra obtained from the operators acting in $L^2$ of a Gibbs invariant probability $mu$) and its relation with the eigen-probability $ u_beta$ for the dual of a certain Ruele operator. We consider an example for a case of Hofbauer type where there exist a Phase transition for the Gibbs state. There is no Phase transition for the KMS state.