Do you want to publish a course? Click here

Induced anomalous Hall effect of massive Dirac fermions in ZrTe5 and HfTe5 thin flakes

404   0   0.0 ( 0 )
 Added by Jian Wang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Researches on anomalous Hall effect (AHE) have been lasting for a century to make clear the underlying physical mechanism. Generally, the AHE appears in magnetic materials, in which extrinsic process related to scattering effects and intrinsic contribution connected with Berry curvature are crucial. Recently, AHE has been counterintuitively observed in non-magnetic topological materials and attributed to the existence of Weyl points. However, the Weyl point scenario would lead to unsaturated AHE even in large magnetic fields and contradicts the saturation of AHE in several tesla (T) in experiments. In this work, we investigate the Hall effect of ZrTe5 and HfTe5 thin flakes in static ultrahigh magnetic fields up to 33 T. We find the AHE saturates to 55 (70) Ohm^-1*cm^-1 for ZrTe5 (HfTe5) thin flakes above ~ 10 T. Combining detailed magnetotransport experiments and Berry curvature calculations, we clarify that the splitting of massive Dirac bands without Weyl points can be responsible for AHE in non-magnetic topological materials ZrTe5 and HfTe5 thin flakes. This model can identify our thin flake samples to be weak topological insulators and serve as a new tool to probe the band structure topology in topological materials.

rate research

Read More

ZrTe$_5$ has been of recent interest as a potential Dirac/Weyl semimetal material. Here, we report the results of experiments performed via in-situ 3D double-axis rotation to extract the full $4pi$ solid angular dependence of the transport properties. A clear anomalous Hall effect (AHE) was detected for every sample, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Interestingly, the AHE takes large values when the magnetic field is rotated in-plane, with the values vanishing above $sim 60$ K where the negative longitudinal magnetoresistance (LMR) also disappears. This suggests a close relation in their origins, which we attribute to Berry curvature generated by the Weyl nodes.
Symmetry, dimensionality, and interaction are crucial ingredients for phase transitions and quantum states of matter. As a prominent example, the integer quantum Hall effect (QHE) represents a topological phase generally regarded as characteristic for two-dimensional (2D) electronic systems, and its many aspects can be understood without invoking electron-electron interaction. The intriguing possibility of generalizing QHE to three-dimensional (3D) systems was proposed decades ago, yet it remains elusive experimentally. Here, we report clear experimental evidence for the 3D QHE observed in bulk ZrTe5 crystals. Owing to the extremely high sample quality, the extreme quantum limit with only the lowest Landau level occupied can be achieved by an applied magnetic field as low as 1.5 T. Remarkably, in this regime, we observe a dissipationless longitudinal resistivity rho_xx=0 accompanied with a well-developed Hall resistivity plateau rho_xy=(1pm0.1) h/e^2 (lambda_(F,z)/2), where lambda_(F,z) is the Fermi wavelength along the field direction (z axis). This striking result strongly suggests a Fermi surface instability driven by the enhanced interaction effects in the extreme quantum limit. In addition, with further increasing magnetic field, both rho_xx and rho_xy increase dramatically and display an interesting metal-insulator transition, representing another magnetic field driven quantum phase transition. Our findings not only unambiguously reveal a novel quantum state of matter resulting from an intricate interplay among dimensionality, interaction, and symmetry breaking, but also provide a promising platform for further exploration of more exotic quantum phases and transitions in 3D systems.
Resistivity anomaly, a sharp peak of resistivity at finite temperatures, in the transition-metal pentatellurides ZrTe5 and HfTe5 was observed four decades ago, and more exotic and anomalous behaviors of electric and thermoelectric transport were revealed recent years. Here we present a theory of Dirac polarons, composed by massive Dirac electrons and holes in an encircling cloud of lattice displacements or phonons at finite temperatures. The chemical potential of Dirac polarons sweeps the band gap of the topological band structure by increasing the temperature, leading to the resistivity anomaly. Formation of a nearly neutral state of Dirac polarons accounts for the anomalous behaviors of the electric and thermoelectric resistivity.
Quantum anomalous Hall effect (QAHE) has been experimentally observed in magnetically doped topological insulators. However, ultra-low temperature (usually below 300 mK), which is mainly attributed to inhomogeneous magnetic doping, becomes a daunting challenge for potential applications. Here, a textit{nonmagnetic}-doping strategy is proposed to produce ferromagnetism and realize QAHE in topological insulators. We numerically demonstrated that magnetic moments can be induced by nitrogen or carbon substitution in Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$, but only nitrogen-doped Sb$_2$Te$_3$ exhibits long-range ferromagnetism and preserve large bulk band gap. We further show that its corresponding thin-film can harbor QAHE at temperatures of 17-29 Kelvin, which is two orders of magnitude higher than the typical temperatures in similar systems. Our proposed textit{nonmagnetic} doping scheme may shed new light in experimental realization of high-temperature QAHE in topological insulators.
135 - M. Tanaka , Y. Fujishiro , M. Mogi 2020
Magnetic Weyl semimetals attract considerable interest not only for their topological quantum phenomena but also as an emerging materials class for realizing quantum anomalous Hall effect in the two-dimensional limit. A shandite compound Co3Sn2S2 with layered Kagome-lattices is one such material, where vigorous efforts have been devoted to synthesize the two-dimensional crystal. Here we report a synthesis of Co3Sn2S2 thin flakes with a thickness of 250 nm by chemical vapor transport method. We find that this facile bottom-up approach allows the formation of large-sized Co3Sn2S2 thin flakes of high-quality, where we identify the largest electron mobility (~2,600 cm2V-1s-1) among magnetic topological semimetals, as well as the large anomalous Hall conductivity (~1,400 {Omega}-1cm-1) and anomalous Hall angle (~32 %) arising from the Berry curvature. Our study provides a viable platform for studying high-quality thin flakes of magnetic Weyl semimetal and stimulate further research on unexplored topological phenomena in the two-dimensional limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا