Axial Magnetoelectric Effect in Dirac semimetals


Abstract in English

We propose a mechanism to generate a static magnetization via {em axial magnetoelectric effect} (AMEE). Magnetization ${bf M} sim {bf E}_5(omega)times {bf E}_5^{*}(omega)$ appears as a result of the transfer of the angular momentum of the axial electric field ${bf E}_5(t)$ into the magnetic moment in Dirac and Weyl semimetals. We point out similarities and differences between the proposed AMEE and a conventional inverse Faraday effect (IFE). As an example, we estimated the AMEE generated by circularly polarized acoustic waves and find it to be on the scale of microgauss for gigahertz frequency sound. In contrast to a conventional IFE, magnetization rises linearly at small frequencies and fixed sound intensity as well as demonstrates a nonmonotonic peak behavior for the AMEE. The effect provides a way to investigate unusual axial electromagnetic fields via conventional magnetometry techniques.

Download