No Arabic abstract
We propose and demonstrate a scheme to enable Doppler compensation within optical cavities for atom interferometry at significantly increased mode diameters. This has the potential to overcome the primary limitations in cavity enhancement for atom interferometry, circumventing the cavity linewidth limit and enabling mode filtering, power enhancement, and a large beam diameter simultaneously. This approach combines a magnified linear cavity with an intracavity Pockels cell. The Pockels cell introduces a voltage tunable birefringence allowing the cavity mode frequencies to track the Raman lasers as they scan to compensate for gravitationally induced Doppler shifts, removing the dominant limitation of current cavity enhanced systems. A cavity is built to this geometry and shown to simultaneously realize the capability required for Doppler compensation, with a 5.04~mm $1/e^{2}$ diameter beam waist and an enhancement factor of $>$5x at a finesse of 35. Furthermore, this has a tunable Gouy phase, allowing the suppression of higher order spatial modes and the avoidance of regions of instability. This approach can therefore enable enhanced contrast and longer atom interferometry times while also enabling the key features of cavity enhanced atom interferometry, power enhancement and the reduction of aberrations. This is relevant to future reductions in the optical power requirement of quantum technology, or in providing enhanced performance for atom interferometers targeting fundamental science.
We demonstrate a narrow-linewidth 780 nm laser system with up to 40 W power and a frequency modulation bandwidth of 230 MHz. Efficient overlap on nonlinear optical elements combines two pairs of phase-locked frequency components into a single beam. Serrodyne modulation with a high-quality sawtooth waveform is used to perform frequency shifts with > 96.5 % efficiency over tens of MHz. This system enables next-generation atom interferometry by delivering simultaneous, Stark-shift-compensated dual beam splitters while minimizing spontaneous emission.
Large scale atom interferometers promise unrivaled strain sensitivity to midband (0.1 - 10 Hz) gravitational waves, and will probe a new parameter space in the search for ultra-light scalar dark matter. These atom interferometers require a momentum separation above 10^4 hbar k between interferometer arms in order to reach the target sensitivity. Prohibitively high optical intensity and wavefront flatness requirements have thus far limited the maximum achievable momentum splitting. We propose a scheme for optical cavity enhanced atom interferometry, using circulating, spatially resolved pulses, and intracavity frequency modulation to overcome these limitations and reach 10^4 hbar k momentum separation. We present parameters suitable for the experimental realization of 10^4 hbar k splitting in a 1 km interferometer using the 698 nm clock transition in 87Sr, and describe performance enhancements in 10 m scale devices operating on the 689 nm intercombination line in 87Sr. Although technically challenging to implement, the laser and cloud requirements are within the reach of upcoming cold-atom based interferometers. Our scheme satisfies the most challenging requirements of these sensors and paves the way for the next generation of high sensitivity, large momentum transfer atom interferometers.
We propose a tractor atom interferometer (TAI) based on three-dimensional (3D) confinement and transport of split atomic wavefunction components in potential wells that follow programmed paths. The paths are programmed to split and recombine atomic wavefunctions at well-defined space-time points, guaranteeing closure of the interferometer. Uninterrupted 3D confinement of the interfering wavefunction components in the tractor wells eliminates coherence loss due to wavepacket dispersion. Using Crank-Nicolson simulation of the time-dependent Schrodinger equation, we compute the quantum evolution of scalar and spinor wavefunctions in several TAI sample scenarios. The interferometric phases extracted from the wavefunctions allow us to quantify gravimeter sensitivity, for the TAI scenarios studied. We show that spinor-TAI supports matter-wave beam splitters that are more robust against non-adiabatic effects than their scalar-TAI counterparts. We confirm the validity of semiclassical path-integral phases taken along the programmed paths of the TAI. Aspects for future experimental realizations of TAI are discussed.
We describe an optical bench in which we lock the relative frequencies or phases of a set of three lasers in order to use them in a cold atoms interferometry experiment. As a new feature, the same two lasers serve alternately to cool atoms and to realize the atomic interferometer. This requires a fast change of the optical frequencies over a few GHz. The number of required independent laser sources is then only 3, which enables the construction of the whole laser system on a single transportable optical bench. Recent results obtained with this optical setup are also presented.
The light-pulse atom interferometry method is reviewed. Applications of the method to inertial navigation and tests of the Equivalence Principle are discussed.