Do you want to publish a course? Click here

Time-resolved optical conductivity and Higgs oscillations in two-band dirty superconductors

84   0   0.0 ( 0 )
 Added by Rafael Haenel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent studies have emphasized the importance of impurity scattering for the optical Higgs response of superconductors. In the dirty limit, an additional paramagnetic coupling of light to the superconducting condensate arises which drastically enhances excitation. So far, most work concentrated on the periodic driving with light, where the third-harmonic generation response of the Higgs mode was shown to be enhanced. In this work, we additionally calculate the time-resolved optical conductivity of single- and two-band superconductors in a two-pulse quench-probe setup, where we find good agreement with existing experimental results. We use the Mattis-Bardeen approach to incorporate impurity scattering and calculate explicitly the time-evolution of the system. Calculations are performed both in a diagrammatic picture derived from an effective action formalism and within a time-dependent density matrix formalism.



rate research

Read More

We developed microscopic theory of Josephson effect in point contacts between dirty two-band superconductors. The general expression for the Josephson current, which is valid for arbitrary temperatures, is obtained. This expression was used for calculation of current-phase relations and temperature dependences of critical current with application to MgB2 superconductor. Also we have considered influence on contact characteristics interband scattering effect appeared in case of dirty superconductors. It is shown that the correction to Josephson current due to the interband scattering depends on phase shift in the banks (i.e. s- or s+/- -wave symmetry of order parameters)
Higgs oscillations in nonequilibrium superconductors provide an unique tool to obtain information about the underlying order parameter. Several properties like the absolute value, existence of multiple gaps and the symmetry of the order parameter can be encoded in the Higgs oscillation spectrum. Studying Higgs oscillations with time-resolved angle-resolved photoemission spectroscopy (ARPES) has the advantage over optical measurements that a momentum-resolved analysis of the condensate dynamic is possible. In this paper, we investigate the time-resolved spectral function measured in ARPES for different quench protocols. We find that analyzing amplitude oscillations of the ARPES intensity in the whole Brillouin zone allows to understand how the condensate dynamic contributes to the emerging of collective Higgs oscillations. Furthermore, by evaluating the phase of these oscillations the symmetry deformation dynamic of the condensate can be revealed, which gives insight about the ground state symmetry of the system. With such an analysis, time-resolved ARPES experiments might be used in future as a powerful tool in the field of Higgs spectroscopy.
We present a microscopic study of the behavior of the order parameters near boundaries of a two-band superconducting material, described by the standard tight-binding Bardeen-Cooper-Schrieffer model. We find superconducting surface states. The relative difference between bulk and surface critical temperatures is a nontrivial function of the interband coupling strength. For superconductors with weak interband coupling, boundaries induce variations of the gaps with the presence of multiple length scales, despite non-zero interband Josephson coupling.
We present a systematic study of the response properties of two-band (multi-gap) superconductors with spin-singlet (s-wave) pairing correlations, which are assumed to be caused by both intraband (lambda_{ii}, i=1,2) and interband (lambda_{12}) pairing interactions. In this first of three planned publications we concentrate on the properties of such superconducting systems in global and local thermodynamic equilibrium, the latter including weak perturbations in the stationary long-wavelength limit. The discussion of global thermodynamic equilibrium must include the solution (analytical in the Ginzburg-Landau and the low temperature limit) of the coupled self-consistency equations for the two energy gaps Delta_i(T), i=1,2. These solutions allow to study non-universal behavior of the two relevant BCS-Muhlschlegel parameters, namely the specific heat discontinuity Delta C/C_N and the zero temperature gaps Delta_i(0)/pi k_B T_c, i=1,2. The discussion of a local equilibrium situation includes the calculation of the supercurrent density as a property of the condensate, and the calculation of both the specific heat capacity and the spin susceptibility as properties of the gas of thermal excitations in the spirit of a microscopic two-fluid description. Non-monotonic behavior in the temperature dependences of the gaps and all these local response functions is predicted to occur particularly for very small values of the interband pair-coupling constant lambda_{12}.
170 - Lukas Schwarz , Dirk Manske 2020
Higgs spectroscopy is a new field in which Higgs modes in nonequilibrium superconductors are analyzed to gain information about the ground state. One experimental setup in which the Higgs mode in s-wave superconductors was observed is periodic driving with THz light, which shows resonances in the third-harmonic generation (THG) signal if twice the driving frequency matches the energy of the Higgs mode. We derive expressions of the driven gap oscillations for arbitrary gap symmetry and calculate the THG response. We demonstrate that the possible Higgs modes for superconductors with non-trivial gap symmetry can lead to additional resonances if twice the driving frequency matches the energy of these Higgs modes and we disentangle the influence of charge density fluctuations (CDF) to the THG signal within our clean-limit analysis. With this we show that THG experiments on unconventional superconductors allow for a detection of their Higgs modes. This paves the way for future studies on realistic systems including additional features to understand the collective excitation spectra of unconventional superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا