Do you want to publish a course? Click here

Understanding Image Retrieval Re-Ranking: A Graph Neural Network Perspective

90   0   0.0 ( 0 )
 Added by Xuanmeng Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The re-ranking approach leverages high-confidence retrieved samples to refine retrieval results, which have been widely adopted as a post-processing tool for image retrieval tasks. However, we notice one main flaw of re-ranking, i.e., high computational complexity, which leads to an unaffordable time cost for real-world applications. In this paper, we revisit re-ranking and demonstrate that re-ranking can be reformulated as a high-parallelism Graph Neural Network (GNN) function. In particular, we divide the conventional re-ranking process into two phases, i.e., retrieving high-quality gallery samples and updating features. We argue that the first phase equals building the k-nearest neighbor graph, while the second phase can be viewed as spreading the message within the graph. In practice, GNN only needs to concern vertices with the connected edges. Since the graph is sparse, we can efficiently update the vertex features. On the Market-1501 dataset, we accelerate the re-ranking processing from 89.2s to 9.4ms with one K40m GPU, facilitating the real-time post-processing. Similarly, we observe that our method achieves comparable or even better retrieval results on the other four image retrieval benchmarks, i.e., VeRi-776, Oxford-5k, Paris-6k and University-1652, with limited time cost. Our code is publicly available.



rate research

Read More

Single image dehazing, which aims to recover the clear image solely from an input hazy or foggy image, is a challenging ill-posed problem. Analysing existing approaches, the common key step is to estimate the haze density of each pixel. To this end, various approaches often heuristically designed haze-relevant features. Several recent works also automatically learn the features via directly exploiting Convolutional Neural Networks (CNN). However, it may be insufficient to fully capture the intrinsic attributes of hazy images. To obtain effective features for single image dehazing, this paper presents a novel Ranking Convolutional Neural Network (Ranking-CNN). In Ranking-CNN, a novel ranking layer is proposed to extend the structure of CNN so that the statistical and structural attributes of hazy images can be simultaneously captured. By training Ranking-CNN in a well-designed manner, powerful haze-relevant features can be automatically learned from massive hazy image patches. Based on these features, haze can be effectively removed by using a haze density prediction model trained through the random forest regression. Experimental results show that our approach outperforms several previous dehazing approaches on synthetic and real-world benchmark images. Comprehensive analyses are also conducted to interpret the proposed Ranking-CNN from both the theoretical and experimental aspects.
157 - Yuqi Zhang , Qian Qi , Chong Liu 2021
Nowadays, deep learning is widely applied to extract features for similarity computation in person re-identification (re-ID) and have achieved great success. However, due to the non-overlapping between training and testing IDs, the difference between the data used for model training and the testing data makes the performance of learned feature degraded during testing. Hence, re-ranking is proposed to mitigate this issue and various algorithms have been developed. However, most of existing re-ranking methods focus on replacing the Euclidean distance with sophisticated distance metrics, which are not friendly to downstream tasks and hard to be used for fast retrieval of massive data in real applications. In this work, we propose a graph-based re-ranking method to improve learned features while still keeping Euclidean distance as the similarity metric. Inspired by graph convolution networks, we develop an operator to propagate features over an appropriate graph. Since graph is the essential key for the propagation, two important criteria are considered for designing the graph, and three different graphs are explored accordingly. Furthermore, a simple yet effective method is proposed to generate a profile vector for each tracklet in videos, which helps extend our method to video re-ID. Extensive experiments on three benchmark data sets, e.g., Market-1501, Duke, and MARS, demonstrate the effectiveness of our proposed approach.
This paper presents a novel approach for image retrieval and pattern spotting in document image collections. The manual feature engineering is avoided by learning a similarity-based representation using a Siamese Neural Network trained on a previously prepared subset of image pairs from the ImageNet dataset. The learned representation is used to provide the similarity-based feature maps used to find relevant image candidates in the data collection given an image query. A robust experimental protocol based on the public Tobacco800 document image collection shows that the proposed method compares favorably against state-of-the-art document image retrieval methods, reaching 0.94 and 0.83 of mean average precision (mAP) for retrieval and pattern spotting (IoU=0.7), respectively. Besides, we have evaluated the proposed method considering feature maps of different sizes, showing the impact of reducing the number of features in the retrieval performance and time-consuming.
124 - Shenglan Liu , Jun Wu , Lin Feng 2016
Incompatibility of image descriptor and ranking is always neglected in image retrieval. In this paper, manifold learning and Gestalt psychology theory are involved to solve the incompatibility problem. A new holistic descriptor called Perceptual Uniform Descriptor (PUD) based on Gestalt psychology is proposed, which combines color and gradient direction to imitate the human visual uniformity. PUD features in the same class images distributes on one manifold in most cases because PUD improves the visual uniformity of the traditional descriptors. Thus, we use manifold ranking and PUD to realize image retrieval. Experiments were carried out on five benchmark data sets, and the proposed method can greatly improve the accuracy of image retrieval. Our experimental results in the Ukbench and Corel-1K datasets demonstrated that N-S score reached to 3.58 (HSV 3.4) and mAP to 81.77% (ODBTC 77.9%) respectively by utilizing PUD which has only 280 dimension. The results are higher than other holistic image descriptors (even some local ones) and state-of-the-arts retrieval methods.
Image retrieval based on deep convolutional features has demonstrated state-of-the-art performance in popular benchmarks. In this paper, we present a unified solution to address deep convolutional feature aggregation and image re-ranking by simulating the dynamics of heat diffusion. A distinctive problem in image retrieval is that repetitive or emph{bursty} features tend to dominate final image representations, resulting in representations less distinguishable. We show that by considering each deep feature as a heat source, our unsupervised aggregation method is able to avoid over-representation of emph{bursty} features. We additionally provide a practical solution for the proposed aggregation method and further show the efficiency of our method in experimental evaluation. Inspired by the aforementioned deep feature aggregation method, we also propose a method to re-rank a number of top ranked images for a given query image by considering the query as the heat source. Finally, we extensively evaluate the proposed approach with pre-trained and fine-tuned deep networks on common public benchmarks and show superior performance compared to previous work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا