Misspecified Beliefs about Time Lags


Abstract in English

We examine the long-term behavior of a Bayesian agent who has a misspecified belief about the time lag between actions and feedback, and learns about the payoff consequences of his actions over time. Misspecified beliefs about time lags result in attribution errors, which have no long-term effect when the agents action converges, but can lead to arbitrarily large long-term inefficiencies when his action cycles. Our proof uses concentration inequalities to bound the frequency of action switches, which are useful to study learning problems with history dependence. We apply our methods to study a policy choice game between a policy-maker who has a correctly specified belief about the time lag and the public who has a misspecified belief.

Download