Do you want to publish a course? Click here

Relativistic Freeze-in with Scalar Dark Matter in a Gauged $B-L$ Model and Electroweak Symmetry Breaking

295   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore relativistic freeze-in production of scalar dark matter in gauged $B-L$ model, where we focus on the production of dark matter from the decay and annihilation of Standard Model (SM) and $B-L$ Higgs bosons. We consider the Bose-Einstein (BE) and Fermi-Dirac (FD) statistics, along with the thermal mass correction of the SM Higgs boson in our analysis. We show that in addition to the SM Higgs boson, the annihilation and decay of the $B-L$ scalar can also contribute substantially to the dark matter relic density. Potential effects of electroweak symmetry breaking (EWSB) and thermal mass correction in BE framework enhance the dark matter relic substantially as it freezes-in near EWSB temperature via scalar annihilation. However, such effects are not so prominent when the dark matter freezes-in at a later epoch than EWSB, dominantly by decay of scalars. The results of this analysis are rather generic, and applicable to other similar scenarios.



rate research

Read More

We investigate the dark matter and the cosmological baryon asymmetry in a simple theory where baryon (B) and lepton (L) number are local gauge symmetries that are spontaneously broken. In this model, the cold dark matter candidate is the lightest new field with baryon number and its stability is an automatic consequence of the gauge symmetry. Dark matter annihilation is either through a leptophobic gauge boson whose mass must be below a TeV or through the Higgs boson. Since the mass of the leptophobic gauge boson has to be below the TeV scale one finds that in the first scenario there is a lower bound on the elastic cross section of about 5x10^{-46} cm^2. Even though baryon number is gauged and not spontaneously broken until the weak scale, a cosmologically acceptable baryon excess is possible. There is tension between achieving both the measured baryon excess and the dark matter density.
We propose a unified setup for dark matter, inflation and baryon asymmetry generation through the neutrino mass seesaw mechanism. Our scenario emerges naturally from an extended gauge group containing $B-L$ as a non-commutative symmetry, broken by a singlet scalar that also drives inflation. Its decays reheat the universe, producing the lightest right-handed neutrino. Automatic matter parity conservation leads to the stability of an asymmetric dark matter candidate, directly linked to the matter-antimatter asymmetry in the universe.
We discuss a classically conformal radiative neutrino model with gauged B$-$L symmetry, in which the B$-$L symmetry breaking can occur through the Coleman-Weinberg mechanism. As a result, Majorana mass term is generated and EW symmetry breaking also occurs. We show some allowed parameters to satisfy several theoretical and experimental constraints. Theoretical constraints are inert conditions and Coleman-Weinberg condition. Experimental bounds are lepton flavor violation(especially mu -> e gamma), the current bound on the $Z$ mass at LHC, in additions to the neutrino oscillations.
We show that a discrete exchange symmetry can give rise to realistic dark matter candidates in models with warped extra dimensions. We show how to realize our construction in a variety of models with warped extra dimensions and study in detail a realistic model of Gauge-Higgs Unification/composite Higgs in which the observed amount of dark matter is naturally reproduced. In this model, a realistic pattern of electroweak symmetry breaking typically occurs in a region of parameter space in which the fit to the electroweak precision observables improves, the Higgs is heavier than the experimental bound and new light quark resonances are predicted. We also quantify the fine-tuning of such scenarios, and discuss in which sense Gauge-Higgs Unification models result in a natural theory of electroweak symmetry breaking.
The present matter content of our universe may be governed by a $U(1)_{B-L}$ symmetry -- the simplest gauge completion of the seesaw mechanism which produces small neutrino masses. The matter parity results as a residual gauge symmetry, implying dark matter stability. The Higgs field that breaks the $B-L$ charge inflates the early universe successfully and then decays to right-handed neutrinos, which reheats the universe and generates both normal matter and dark matter manifestly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا