No Arabic abstract
The relative importance of the helicity and cross-helicity electromotive dynamo effects for self-sustained magnetic field generation by chaotic thermal convection in rotating spherical shells is investigated as a function of shell thickness. Two distinct branches of dynamo solutions are found to coexist in direct numerical simulations for shell aspect ratios between 0.25 and 0.6 - a mean-field dipolar regime and a fluctuating dipolar regime. The properties characterising the coexisting dynamo attractors are compared and contrasted, including differences in temporal behavior and spatial structures of both the magnetic field and rotating thermal convection. The helicity $alpha$-effect and the cross-helicity $gamma$-effect are found to be comparable in intensity within the fluctuating dipolar dynamo regime, where their ratio does not vary significantly with the shell thickness. In contrast, within the mean-field dipolar dynamo regime the helicity $alpha$-effect dominates by approximately two orders of magnitude and becomes stronger with decreasing shell thickness.
(abidged) Context: Stellar convection zones are characterized by vigorous high-Reynolds number turbulence at low Prandtl numbers. Aims: We study the dynamo and differential rotation regimes at varying levels of viscous, thermal, and magnetic diffusion. Methods: We perform three-dimensional simulations of stratified fully compressible magnetohydrodynamic convection in rotating spherical wedges at various thermal and magnetic Prandtl numbers (from 0.25 to 2 and 5, respectively). Results: We find that the rotation profiles for high thermal diffusivity show a monotonically increasing angular velocity from the bottom of the convection zone to the top and from the poles toward the equator. For sufficiently rapid rotation, a region of negative radial shear develops at mid-latitudes as the thermal diffusivity is decreased. This coincides with a change in the dynamo mode from poleward propagating activity belts to equatorward propagating ones. Furthermore, the cyclic solutions disappear at the highest magnetic Reynolds numbers. The total magnetic energy increases with the magnetic Reynolds number in the range studied here ($5-151$), but the energies of the mean magnetic fields level off at high magnetic Reynolds numbers. The differential rotation is strongly affected by the magnetic fields and almost vanishes at the highest magnetic Reynolds numbers. In some of our most turbulent cases we find that two regimes are possible where either differential rotation is strong and mean magnetic fields relatively weak or vice versa. Conclusions: Our simulations indicate a strong non-linear feedback of magnetic fields on differential rotation, leading to qualitative changes in the behaviors of large-scale dynamos at high magnetic Reynolds numbers. Furthermore, we do not find indications of the simulations approaching an asymptotic regime where the results would be independent of diffusion coefficients.
The motivation for considering distributed large scale dynamos in the solar context is reviewed in connection with the magnetic helicity constraint. Preliminary accounts of 3-dimensional direct numerical simulations (in spherical shell segments) and simulations of 2-dimensional mean field models (in spherical shells) are presented. Interesting similarities as well as some differences are noted.
Convection and magnetic field generation in the Earth and planetary interiors are driven by both thermal and compositional gradients. In this work numerical simulations of finite-amplitude double-diffusive convection and dynamo action in rapidly rotating spherical shells full of incompressible two-component electrically-conducting fluid are reported. Four distinct regimes of rotating double-diffusive convection identified in a recent linear analysis (Silva et al., 2019, Geophys. Astrophys. Fluid Dyn., doi:10.1080/03091929.2019.1640875) are found to persist significantly beyond the onset of instability while their regime transitions remain abrupt. In the semi-convecting and the fingering regimes characteristic flow velocities are small compared to those in the thermally- and compositionally-dominated overturning regimes, while zonal flows remain weak in all regimes apart from the thermally-dominated one. Compositionally-dominated overturning convection exhibits significantly narrower azimuthal structures compared to all other regimes while differential rotation becomes the dominant flow component in the thermally-dominated case as driving is increased. Dynamo action occurs in all regimes apart from the regime of fingering convection. While dynamos persist in the semi-convective regime they are very much impaired by small flow intensities and very weak differential rotation in this regime which makes poloidal to toroidal field conversion problematic. The dynamos in the thermally-dominated regime include oscillating dipolar, quadrupolar and multipolar cases similar to the ones known from earlier parameter studies. Dynamos in the compositionally-dominated regime exhibit subdued temporal variation and remain predominantly dipolar due to weak zonal flow in this regime. These results significantly enhance our understanding of the primary drivers of planetary core flows and magnetic fields.
Recent numerical simulations showed that the mean flow is generated in inhomogeneous turbulence of an incompressible fluid accompanied with helicity and system rotation. In order to investigate the mechanism of this phenomenon, we carry out a numerical simulation of inhomogeneous turbulence in a rotating system. In the simulation, an external force is applied to inject inhomogeneous turbulent helicity and the rotation axis is taken to be perpendicular to the inhomogeneous direction. No mean velocity is set in the initial condition of the simulation. The simulation results show that only in the case with both the helical forcing and the system rotation, the mean flow directed to the rotation axis is generated and sustained. We investigate the physical origin of this flow-generation phenomenon by considering the budget of the Reynolds-stress transport equation. It is found that the pressure diffusion term has a large contribution in the Reynolds stress equation and supports the generated mean flow. It is shown that a model expression for the pressure diffusion can be expressed by the turbulent helicity gradient coupled with the angular velocity of the system rotation. This implies that inhomogeneous helicity can play a significant role for the generation of the large-scale velocity distribution in incompressible turbulent flows.
In recent years, several optimal dynamos have been discovered. They minimize the magnetic energy dissipation or, equivalently, maximize the growth rate at a fixed magnetic Reynolds number. In the optimal dynamo of Willis (2012, Phys. Rev. Lett. 109, 251101), we find mean-field dynamo action for planar averages. One component of the magnetic field grows exponentially while the other decays in an oscillatory fashion near onset. This behavior is different from that of an alpha^2 dynamo, where the two non-vanishing components of the planar averages are coupled and have the same growth rate. For the Willis dynamo, we find that the mean field is excited by a negative turbulent magnetic diffusivity, which has a non-uniform spatial profile near onset. The temporal oscillations in the decaying component are caused by the corresponding component of the diffusivity tensor being complex when the mean field is decaying and, in this way, time-dependent. The growing mean field can be modeled by a negative magnetic diffusivity combined with a positive magnetic hyperdiffusivity. In two other classes of optimal dynamos of Chen et al. (2015, J. Fluid Mech. 783, 23), we find, to some extent, similar mean-field dynamo actions. When the magnetic boundary conditions are mixed, the two components of the planar averaged field grow at different rates when the dynamo is 15% supercritical. When the mean magnetic field satisfies homogeneous boundary conditions (where the magnetic field is tangential to the boundary), mean-field dynamo action is found for one-dimensional averages, but not for planar averages. Despite having different spatial profiles, both dynamos show negative turbulent magnetic diffusivities. Our finding suggests negative turbulent magnetic diffusivities may support a broader class of dynamos than previously thought, including these three optimal dynamos.