Do you want to publish a course? Click here

The comparison of methods for anisotropic flow measurements with the MPD Experiment at NICA

64   0   0.0 ( 0 )
 Added by Petr Parfenov
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The anisotropic collective flow is one of the key observables to study the properties of dense matter created in heavy-ion collisions. The performance of Multi-Purpose Detector (MPD) at NICA collider for directed and elliptic flow measurements is studied with Monte-Carlo simulations of heavy-ion collisions at energies $sqrt{s_{NN}}$ = 4 - 11 GeV.



rate research

Read More

The main goal of the future MPD experiment at NICA is to explore the QCD phase diagram in the region of highly compressed and hot baryonic matter in the energy range corresponding to the highest chemical potential. Properties of such dense matter can be studied using azimuthal anisotropy which is categorized by the Fourier coefficients of the azimuthal distribution decomposition. Performance of the detector response based on simulations with realistic reconstruction procedure is presented for centrality determination, reaction plane estimation, directed and elliptic flow coefficients.
The Multi-Purpose Detector (MPD) is designed to study a hot and dense baryonic matter formed in heavy-ion collisions at SQRT(sNN)=4-11 GeV at the NICA accelerator complex (Dubna, Russia). Large-sized electromagnetic calorimeter (ECal) of the MPD spectrometer will provide precise spatial and energy measurements for photons and electrons in the central pseudorapidity region of |eta|<1.2. The Shashlyk-type sampling structure of the ECal is optimized for the photons energy range from about 40 MeV to 2-3 GeV. Fine segmentation and projective geometry of the calorimeter allow to deal with high multiplicity of secondary particles from Au-Au reactions. In this talk, we report on a design, a construction status and expected parameters of the ECal.
Centrality dependence of the directed flow of protons in Au+Au collisions at the beam energy of 1.23A GeV collected by the HADES experiment at GSI is presented. Measurements are performed with respect to the spectators plane estimated using the Forward Wall hodoscope. Biases due to non-flow correlations and correlated detector effects are evaluated. The corresponding systematic uncertainties are quantified using estimates of the spectators plane from various forward rapidity regions constructed from groups of Forward Wall channels and protons reconstructed with the HADES tracking system.
We study the formation of the directed flow of hadrons in nuclear collisions at energies between AGS and SPS in Monte Carlo cascade model. The slope of the proton flow at midrapidity tends to zero (softening) with increasing impact parameter of the collision. For very peripheral topologies this slope becomes negative (antiflow). The effect is caused by rescattering of hadrons in remnants of the colliding nuclei. Since the softening of the proton flow can be misinterpreted as indication of the presence of quark-gluon plasma, we propose several measurements at NICA facility which can help one to distinguish between the cases with and without the plasma formation.
We report on measurements of dielectron ($e^+e^-$) production in Au$+$Au collisions at a center-of-mass energy of 200 GeV per nucleon-nucleon pair using the STAR detector at RHIC. Systematic measurements of the dielectron yield as a function of transverse momentum ($p_{rm T}$) and collision centrality show an enhancement compared to a cocktail simulation of hadronic sources in the low invariant-mass region ($M_{ee}<$ 1 GeV/$c^2$). This enhancement cannot be reproduced by the $rho$-meson vacuum spectral function. In minimum-bias collisions, in the invariant-mass range of 0.30 $-$ 0.76 GeV/$c^2$, integrated over the full $p_{rm T}$ acceptance, the enhancement factor is 1.76 $pm$ 0.06 (stat.) $pm$ 0.26 (sys.) $pm$ 0.29 (cocktail). The enhancement factor exhibits weak centrality and $p_{rm T}$ dependence in STARs accessible kinematic regions, while the excess yield in this invariant-mass region as a function of the number of participating nucleons follows a power-law shape with a power of 1.44 $pm$ 0.10. Models that assume an in-medium broadening of the $rho$ meson spectral function consistently describe the observed excess in these measurements. Additionally, we report on measurements of $omega$ and $phi$-meson production through their $e^+e^-$ decay channel. These measurements show good agreement with Tsallis Blast-Wave model predictions as well as, in the case of the $phi$-meson, results through its $K^+K^-$ decay channel. In the intermediate invariant-mass region (1.1$<M_{ee}<$ 3 GeV/$c^2$), we investigate the spectral shapes from different collision centralities. Physics implications for possible in-medium modification of charmed hadron production and other physics sources are discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا