Do you want to publish a course? Click here

Soft Compression for Lossless Image Coding

423   0   0.0 ( 0 )
 Added by Gangtao Xin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Soft compression is a lossless image compression method, which is committed to eliminating coding redundancy and spatial redundancy at the same time by adopting locations and shapes of codebook to encode an image from the perspective of information theory and statistical distribution. In this paper, we propose a new concept, compressible indicator function with regard to image, which gives a threshold about the average number of bits required to represent a location and can be used for revealing the performance of soft compression. We investigate and analyze soft compression for binary image, gray image and multi-component image by using specific algorithms and compressible indicator value. It is expected that the bandwidth and storage space needed when transmitting and storing the same kind of images can be greatly reduced by applying soft compression.



rate research

Read More

We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system. Specifically, the original image is first decomposed into the lossy reconstruction obtained after compressing it with BPG and the corresponding residual. We then model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction, and combine it with entropy coding to losslessly encode the residual. Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder. The resulting compression system achieves state-of-the-art performance in learned lossless full-resolution image compression, outperforming previous learned approaches as well as PNG, WebP, and JPEG2000.
We introduce a simple and efficient lossless image compression algorithm. We store a low resolution version of an image as raw pixels, followed by several iterations of lossless super-resolution. For lossless super-resolution, we predict the probability of a high-resolution image, conditioned on the low-resolution input, and use entropy coding to compress this super-resolution operator. Super-Resolution based Compression (SReC) is able to achieve state-of-the-art compression rates with practical runtimes on large datasets. Code is available online at https://github.com/caoscott/SReC.
This paper provides an extensive study of the behavior of the best achievable rate (and other related fundamental limits) in variable-length lossless compression. In the non-asymptotic regime, the fundamental limits of fixed-to-variable lossless compression with and without prefix constraints are shown to be tightly coupled. Several precise, quantitative bounds are derived, connecting the distribution of the optimal codelengths to the source information spectrum, and an exact analysis of the best achievable rate for arbitrary sources is given. Fine asymptotic results are proved for arbitrary (not necessarily prefix) compressors on general mixing sources. Non-asymptotic, explicit Gaussian approximation bounds are established for the best achievable rate on Markov sources. The source dispersion and the source varentropy rate are defined and characterized. Together with the entropy rate, the varentropy rate serves to tightly approximate the fundamental non-asymptotic limits of fixed-to-variable compression for all but very small blocklengths.
We propose the first practical learned lossless image compression system, L3C, and show that it outperforms the popular engineered codecs, PNG, WebP and JPEG 2000. At the core of our method is a fully parallelizable hierarchical probabilistic model for adaptive entropy coding which is optimized end-to-end for the compression task. In contrast to recent autoregressive discrete probabilistic models such as PixelCNN, our method i) models the image distribution jointly with learned auxiliary representations instead of exclusively modeling the image distribution in RGB space, and ii) only requires three forward-passes to predict all pixel probabilities instead of one for each pixel. As a result, L3C obtains over two orders of magnitude speedups when sampling compared to the fastest PixelCNN variant (Multiscale-PixelCNN). Furthermore, we find that learning the auxiliary representation is crucial and outperforms predefined auxiliary representations such as an RGB pyramid significantly.
Many information sources are not just sequences of distinguishable symbols but rather have invariances governed by alternative counting paradigms such as permutations, combinations, and partitions. We consider an entire classification of these invariances called the twelvefold way in enumerative combinatorics and develop a method to characterize lossless compression limits. Explicit computations for all twelve settings are carried out for i.i.d. uniform and Bernoulli distributions. Comparisons among settings provide quantitative insight.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا