Optical Control of Topological Polariton Phase in a Perovskite Lattice


Abstract in English

Strong light-matter interaction enriches topological photonics by dressing light with matter, which provides the possibility to realize tuneable topological devices with immunity to defects. Topological exciton polaritons, half-light half-matter quasiparticles with giant optical nonlinearity represent a unique platform for active topological photonics with phase tunability. Previous demonstrations of exciton polariton topological insulators still demand cryogenic temperatures and their topological properties are usually fixed without phase tunability. Here, we experimentally demonstrate a room-temperature exciton polariton topological insulator with active phase tunability in a perovskite zigzag lattice. Polarization serves as a degree of freedom to control the reversible transition between distinct topological phases, thanks to the polarization-dependent anisotropy in halide perovskite microcavities. The topologically nontrivial polariton states localized in the edges persist in the presence of a natural defect, showing strong immunity to disorder. We further demonstrate that exciton polaritons can condense into the topological edge states under optical pumping. These results provide an ideal platform for realizing tuneable topological polaritonic devices with room-temperature operation, which can find important applications in optical control, modulation and switching.

Download