Do you want to publish a course? Click here

Learning Optimization-inspired Image Propagation with Control Mechanisms and Architecture Augmentations for Low-level Vision

229   0   0.0 ( 0 )
 Added by Risheng Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In recent years, building deep learning models from optimization perspectives has becoming a promising direction for solving low-level vision problems. The main idea of most existing approaches is to straightforwardly combine numerical iterations with manually designed network architectures to generate image propagations for specific kinds of optimization models. However, these heuristic learning models often lack mechanisms to control the propagation and rely on architecture engineering heavily. To mitigate the above issues, this paper proposes a unified optimization-inspired deep image propagation framework to aggregate Generative, Discriminative and Corrective (GDC for short) principles for a variety of low-level vision tasks. Specifically, we first formulate low-level vision tasks using a generic optimization objective and construct our fundamental propagative modules from three different viewpoints, i.e., the solution could be obtained/learned 1) in generative manner; 2) based on discriminative metric, and 3) with domain knowledge correction. By designing control mechanisms to guide image propagations, we then obtain convergence guarantees of GDC for both fully- and partially-defined optimization formulations. Furthermore, we introduce two architecture augmentation strategies (i.e., normalization and automatic search) to respectively enhance the propagation stability and task/data-adaption ability. Extensive experiments on different low-level vision applications demonstrate the effectiveness and flexibility of GDC.



rate research

Read More

Low-light image enhancement plays very important roles in low-level vision field. Recent works have built a large variety of deep learning models to address this task. However, these approaches mostly rely on significant architecture engineering and suffer from high computational burden. In this paper, we propose a new method, named Retinex-inspired Unrolling with Architecture Search (RUAS), to construct lightweight yet effective enhancement network for low-light images in real-world scenario. Specifically, building upon Retinex rule, RUAS first establishes models to characterize the intrinsic underexposed structure of low-light images and unroll their optimization processes to construct our holistic propagation structure. Then by designing a cooperative reference-free learning strategy to discover low-light prior architectures from a compact search space, RUAS is able to obtain a top-performing image enhancement network, which is with fast speed and requires few computational resources. Extensive experiments verify the superiority of our RUAS framework against recently proposed state-of-the-art methods.
One of the major application areas of interest for both near-term and fault-tolerant quantum computers is the optimization of classical objective functions. In this work, we develop intuitive constructions for a large class of these algorithms based on connections to simple dynamics of quantum systems, quantum walks, and classical continuous relaxations. We focus on developing a language and tools connected with kinetic energy on a graph for understanding the physical mechanisms of success and failure to guide algorithmic improvement. This physical language, in combination with uniqueness results related to unitarity, allow us to identify some potential pitfalls from kinetic energy fundamentally opposing the goal of optimization. This is connected to effects from wavefunction confinement, phase randomization, and shadow defects lurking in the objective far away from the ideal solution. As an example, we explore the surprising deficiency of many quantum methods in solving uncoupled spin problems and how this is both predictive of performance on some more complex systems while immediately suggesting simple resolutions. Further examination of canonical problems like the Hamming ramp or bush of implications show that entanglement can be strictly detrimental to performance results from the underlying mechanism of solution in approaches like QAOA. Kinetic energy and graph Laplacian perspectives provide new insights to common initialization and optimal solutions in QAOA as well as new methods for more effective layerwise training. Connections to classical methods of continuous extensions, homotopy methods, and iterated rounding suggest new directions for research in quantum optimization. Throughout, we unveil many pitfalls and mechanisms in quantum optimization using a physical perspective, which aim to spur the development of novel quantum optimization algorithms and refinements.
73 - Xiao Wang , Guo-Jun Qi 2021
Representation learning has significantly been developed with the advance of contrastive learning methods. Most of those methods have benefited from various data augmentations that are carefully designated to maintain their identities so that the images transformed from the same instance can still be retrieved. However, those carefully designed transformations limited us to further explore the novel patterns exposed by other transformations. Meanwhile, as found in our experiments, the strong augmentations distorted the images structures, resulting in difficult retrieval. Thus, we propose a general framework called Contrastive Learning with Stronger Augmentations~(CLSA) to complement current contrastive learning approaches. Here, the distribution divergence between the weakly and strongly augmented images over the representation bank is adopted to supervise the retrieval of strongly augmented queries from a pool of instances. Experiments on the ImageNet dataset and downstream datasets showed the information from the strongly augmented images can significantly boost the performance. For example, CLSA achieves top-1 accuracy of 76.2% on ImageNet with a standard ResNet-50 architecture with a single-layer classifier fine-tuned, which is almost the same level as 76.5% of supervised results. The code and pre-trained models are available in https://github.com/maple-research-lab/CLSA.
The research of visual signal compression has a long history. Fueled by deep learning, exciting progress has been made recently. Despite achieving better compression performance, existing end-to-end compression algorithms are still designed towards better signal quality in terms of rate-distortion optimization. In this paper, we show that the design and optimization of network architecture could be further improved for compression towards machine vision. We propose an inverted bottleneck structure for end-to-end compression towards machine vision, which specifically accounts for efficient representation of the semantic information. Moreover, we quest the capability of optimization by incorporating the analytics accuracy into the optimization process, and the optimality is further explored with generalized rate-accuracy optimization in an iterative manner. We use object detection as a showcase for end-to-end compression towards machine vision, and extensive experiments show that the proposed scheme achieves significant BD-rate savings in terms of analysis performance. Moreover, the promise of the scheme is also demonstrated with strong generalization capability towards other machine vision tasks, due to the enabling of signal-level reconstruction.
101 - Yun Cao , Jie Mei , Yuebin Wang 2020
Subspace learning (SL) plays an important role in hyperspectral image (HSI) classification, since it can provide an effective solution to reduce the redundant information in the image pixels of HSIs. Previous works about SL aim to improve the accuracy of HSI recognition. Using a large number of labeled samples, related methods can train the parameters of the proposed solutions to obtain better representations of HSI pixels. However, the data instances may not be sufficient enough to learn a precise model for HSI classification in real applications. Moreover, it is well-known that it takes much time, labor and human expertise to label HSI images. To avoid the aforementioned problems, a novel SL method that includes the probability assumption called subspace learning with conditional random field (SLCRF) is developed. In SLCRF, first, the 3D convolutional autoencoder (3DCAE) is introduced to remove the redundant information in HSI pixels. In addition, the relationships are also constructed using the spectral-spatial information among the adjacent pixels. Then, the conditional random field (CRF) framework can be constructed and further embedded into the HSI SL procedure with the semi-supervised approach. Through the linearized alternating direction method termed LADMAP, the objective function of SLCRF is optimized using a defined iterative algorithm. The proposed method is comprehensively evaluated using the challenging public HSI datasets. We can achieve stateof-the-art performance using these HSI sets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا