Do you want to publish a course? Click here

Quantitative characterization of chemorepulsive alignment-induced interactions in active emulsions

65   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The constituent elements of active matter in nature often communicate with their counterparts or the environment by chemical signaling which is central to many biological processes. Examples range from bacteria or sperm that bias their motion in response to an external chemical gradient, to collective cell migration in response to a self-generated gradient. Here, in a purely physicochemical system based on self-propelling oil droplets, we report a novel mechanism of dynamical arrest in active emulsions: swimmers are caged between each others trails of secreted chemicals. We explore this mechanism quantitatively both on the scale of individual agent-trail collisions as well as on the collective scale where the transition to caging happens as a result of autochemotactic interactions.



rate research

Read More

We investigate numerically, by a hybrid lattice Boltzmann method, the morphology and the dynamics of an emulsion made of a polar active gel, contractile or extensile, and an isotropic passive fluid. We focus on the case of a highly off-symmetric ratio between the active and passive components. In absence of any activity we observe an hexatic-ordered droplets phase, with some defects in the layout. We study how the morphology of the system is affected by activity both in the contractile and extensile case. In the extensile case a small amount of activity favors the elimination of defects in the array of droplets, while at higher activities, first aster-like rotating droplets appear, and then a disordered pattern occurs. In the contractile case, at sufficiently high values of activity, elongated structures are formed. Energy and enstrophy behavior mark the transitions between the different regimes.
We use computer simulations to study the morphology and rheological properties of a bidimensional emulsion resulting from a mixture of a passive isotropic fluid and an active contractile polar gel, in the presence of a surfactant that favours the emulsification of the two phases. By varying the intensity of the contractile activity and of an externally imposed shear flow, we find three possible morphologies. For low shear rates, a simple lamellar state is obtained. For intermediate activity and shear rate, an asymmetric state emerges, which is characterized by shear and concentration banding at the polar/isotropic interface. A further increment in the active forcing leads to the self-assembly of a soft channel where an isotropic fluid flows between two layers of active material. We characterize the stability of this state by performing a dynamical test varying the intensity of the active forcing and shear rate. Finally, we address the rheological properties of the system by measuring the effective shear viscosity, finding that this increases as active forcing is increased, so that the fluid thickens with activity.
200 - Mahdi Zarif , Ali Naji 2019
In a system of colloidal inclusions suspended in a thermalized bath of smaller particles, the bath engenders an attractive force between the inclusions, arising mainly from entropic origins, known as the depletion force. In the case of active bath particles, the nature of the bath-mediated force changes dramatically from an attractive to a repulsive one, as the strength of particle activity is increased. We study such bath-mediated effective interactions between colloidal inclusions in a bath of self-propelled Brownian particles, being confined in a narrow planar channel. Confinement is found to have a strong effect on the interaction between colloidal particles, however, this mainly depends on the colloidal orientation inside the channel. Effect of the confinement on the interaction of colloidal disk is controlled by the layering of active particles on the surface boundaries. This can emerge as a competitive factor, involving the tendencies of the channel walls and the colloidal inclusions in accumulating the active particles in their own proximity.
In the presence of a chemically active particle, a nearby chemically inert particle can respond to a concentration gradient and move by diffusiophoresis. The nature of the motion is studied for two cases: first, a fixed reactive sphere and a moving inert sphere, and second, freely moving reactive and inert spheres. The continuum reaction-diffusion and Stokes equations are solved analytically for these systems and microscopic simulations of the dynamics are carried out. Although the relative velocities of the spheres are very similar in the two systems, the local and global structures of streamlines and the flow velocity fields are found to be quite different. For freely moving spheres, when the two spheres approach each other the flow generated by the inert sphere through diffu- siophoresis drags the reactive sphere towards it. This leads to a self-assembled dimer motor that is able to propel itself in solution. The fluid flow field at the moment of dimer formation changes direction. The ratio of sphere sizes in the dimer influences the characteristics of the flow fields, and this feature suggests that active self-assembly of spherical colloidal particles may be manipulated by sphere-size changes in such reactive systems.
We combine numerical and analytical methods to study two dimensional active crystals formed by permanently linked swimmers and with two distinct alignment interactions. The system admits a stationary phase with quasi long range translational order, as well as a moving phase with quasi-long range velocity order. The translational order in the moving phase is significantly influenced by alignment interaction. For Vicsek-like alignment, the translational order is short-ranged, whereas the bond-orientational order is quasi-long ranged, implying a moving hexatic phase. For elasticity-based alignment, the translational order is quasi-long ranged parallel to the motion and short-ranged in perpendicular direction, whereas the bond orientational order is long-ranged. We also generalize these results to higher dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا