Do you want to publish a course? Click here

Performance and Complexity of Sequential Decoding of PAC Codes

95   0   0.0 ( 0 )
 Added by Amir Mozammel
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Performance and complexity of sequential decoding of polarization-adjusted convolutional (PAC) codes is studied. In particular, a performance and computational complexity comparison of PAC codes with 5G polar codes and convolutional codes is given. A method for bounding the complexity of sequential decoding of PAC codes is proposed.



rate research

Read More

Layered decoding is well appreciated in Low-Density Parity-Check (LDPC) decoder implementation since it can achieve effectively high decoding throughput with low computation complexity. This work, for the first time, addresses low complexity column-layered decoding schemes and VLSI architectures for multi-Gb/s applications. At first, the Min-Sum algorithm is incorporated into the column-layered decoding. Then algorithmic transformations and judicious approximations are explored to minimize the overall computation complexity. Compared to the original column-layered decoding, the new approach can reduce the computation complexity in check node processing for high-rate LDPC codes by up to 90% while maintaining the fast convergence speed of layered decoding. Furthermore, a relaxed pipelining scheme is presented to enable very high clock speed for VLSI implementation. Equipped with these new techniques, an efficient decoder architecture for quasi-cyclic LDPC codes is developed and implemented with 0.13um CMOS technology. It is shown that a decoding throughput of nearly 4 Gb/s at maximum of 10 iterations can be achieved for a (4096, 3584) LDPC code. Hence, this work has facilitated practical applications of column-layered decoding and particularly made it very attractive in high-speed, high-rate LDPC decoder implementation.
Raptor codes have been widely used in many multimedia broadcast/multicast applications. However, our understanding of Raptor codes is still incomplete due to the insufficient amount of theoretical work on the performance analysis of Raptor codes, particularly under maximum-likelihood (ML) decoding, which provides an optimal benchmark on the system performance for the other decoding schemes to compare against. For the first time, this paper provides an upper bound and a lower bound, on the packet error performance of Raptor codes under ML decoding, which is measured by the probability that all source packets can be successfully decoded by a receiver with a given number of successfully received coded packets. Simulations are conducted to validate the accuracy of the analysis. More specifically, Raptor codes with different degree distribution and pre-coders, are evaluated using the derived bounds with high accuracy.
Polar codes represent one of the major recent breakthroughs in coding theory and, because of their attractive features, they have been selected for the incoming 5G standard. As such, a lot of attention has been devoted to the development of decoding algorithms with good error performance and efficient hardware implementation. One of the leading candidates in this regard is represented by successive-cancellation list (SCL) decoding. However, its hardware implementation requires a large amount of memory. Recently, a partitioned SCL (PSCL) decoder has been proposed to significantly reduce the memory consumption. In this paper, we examine the paradigm of PSCL decoding from both theoretical and practical standpoints: (i) by changing the construction of the code, we are able to improve the performance at no additional computational, latency or memory cost, (ii) we present an optimal scheme to allocate cyclic redundancy checks (CRCs), and (iii) we provide an upper bound on the list size that allows MAP performance.
A complexity-adaptive tree search algorithm is proposed for $boldsymbol{G}_N$-coset codes that implements maximum-likelihood (ML) decoding by using a successive decoding schedule. The average complexity is close to that of the successive cancellation (SC) decoding for practical error rates when applied to polar codes and short Reed-Muller (RM) codes, e.g., block lengths up to $N=128$. By modifying the algorithm to limit the worst-case complexity, one obtains a near-ML decoder for longer RM codes and their subcodes. Unlike other bit-flip decoders, no outer code is needed to terminate decoding. The algorithm can thus be applied to modified $boldsymbol{G}_N$-coset code constructions with dynamic frozen bits. One advantage over sequential decoders is that there is no need to optimize a separate parameter.
70 - Mohsen Moradi 2020
In this paper, we present an optimal metric function on average, which leads to a significantly low decoding computation while maintaining the superiority of the polarization-adjusted convolutional (PAC) codes error-correction performance. With our proposed metric function, the PAC codes decoding computation is comparable to the conventional convolutional codes (CC) sequential decoding. Moreover, simulation results show an improvement in the low-rate PAC codes error-correction performance when using our proposed metric function. We prove that choosing the polarized cutoff rate as the metric functions bias value reduces the probability of the sequential decoder advancing in the wrong path exponentially with respect to the wrong path depth. We also prove that the upper bound of the PAC codes computation has a Pareto distribution; our simulation results also verify this. Furthermore, we present a scaling-bias procedure and a method of choosing threshold spacing for the search-limited sequential decoding that substantially improves the decoders average computation. Our results show that for some codes with a length of 128, the search-limited PAC codes can achieve an error-correction performance close to the error-correction performance of the polar codes under successive cancellation list decoding with a list size of 64 and CRC length of 11 with a considerably lower computation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا