Relativistic fluid modelling of gamma-ray binaries. I. The model


Abstract in English

Context. Gamma-ray binaries are systems that radiate the dominant part of their non-thermal emission in the gamma-ray band. In a wind-driven scenario, these binaries are thought to consist of a pulsar orbiting a massive star, accelerating particles in the shock arising in the wind collision. Aims. We develop a comprehensive, numerical model for the non-thermal emission of shock accelerated particles including the dynamical effects of fluid instabilities and orbital motion. We demonstrate the model on a generic binary system. Methods. The model is built on a dedicated three-dimensional particle transport simulation for the accelerated particles dynamically coupled to a simultaneous relativistic hydrodynamic simulation of the wind interaction. In a post-processing step, a leptonic emission model involving synchrotron and inverse Compton emission is evaluated based on resulting particle distributions and fluid solutions, consistently accounting for relativistic boosting and $gammagamma$-absorption in the stellar radiation field. The model is implemented as an extension to the Cronos code. Results. In the generic binary, the wind interaction leads to the formation of an extended, asymmetric wind-collision region distorted by the effects of orbital motion, mixing and turbulence giving rise to strong shocks terminating the pulsar wind and secondary shocks in the turbulent fluid flow. With the presented approach it is, for the first time, possible to consistently account for the dynamical shock structure in particle transport processes, yielding a complex distribution of accelerated particles. The predicted emission extends over a broad region of energy, with significant orbital modulation in all bands.

Download