Do you want to publish a course? Click here

SDEs with critical time dependent drifts: weak solutions

80   0   0.0 ( 0 )
 Added by Guohuan Zhao
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove the unique weak solvability of time-inhomogeneous stochastic differential equations with additive noises and drifts in critical Lebsgue space $L^q([0,T]; L^{p}(mathbb{R}^d))$ with $d/p+2/q=1$. The weak uniqueness is obtained by solving corresponding Kolmogorovs backward equations in some second order Sobolev spaces, which is analytically interesting in itself.



rate research

Read More

In this paper, we study (strong and weak) existence and uniqueness of a class of non-Markovian SDEs whose drift contains the derivative in the sense of distributionsof a continuous function.
We obtain $T_2(C)$ for stochastic differential equations with Dini continuous drift and $T_1(C)$ stochastic differential equations with singular coefficients.
We prove that a probability solution of the stationary Kolmogorov equation generated by a first order perturbation $v$ of the Ornstein--Uhlenbeck operator $L$ possesses a highly integrable density with respect to the Gaussian measure satisfying the non-perturbed equation provided that $v$ is sufficiently integrable. More generally, a similar estimate is proved for solutions to inequalities connected with Markov semigroup generators under the curvature condition $CD(theta,infty)$. For perturbations from $L^p$ an analog of the Log-Sobolev inequality is obtained. It is also proved in the Gaussian case that the gradient of the density is integrable to all powers. We obtain dimension-free bounds on the density and its gradient, which also covers the infinite-dimensional case.
103 - Guohuan Zhao 2020
We investigate the well-posedness of distribution dependent SDEs with singular coefficients. Existence is proved when the diffusion coefficient satisfies some non-degeneracy and mild regularity assumptions, and the drift coefficient satisfies an integrability condition and a continuity condition with respect to the (generalized) total variation distance. Uniqueness is also obtained under some additional Lipschitz type continuity assumptions.
We study distribution dependent stochastic differential equation driven by a continuous process, without any specification on its law, following the approach initiated in [16]. We provide several criteria for existence and uniqueness of solutions which go beyond the classical globally Lipschitz setting. In particular we show well-posedness of the equation, as well as almost sure convergence of the associated particle system, for drifts satisfying either Osgood-continuity, monotonicity, local Lipschitz or Sobolev differentiability type assumptions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا