No Arabic abstract
The goal of this chapter is to illustrate a generalization of the Fibonacci word to the case of 2-dimensional configurations on $mathbb{Z}^2$. More precisely, we consider a particular subshift of $mathcal{A}^{mathbb{Z}^2}$ on the alphabet $mathcal{A}={0,dots,18}$ for which we give three characterizations: as the subshift $mathcal{X}_phi$ generated by a 2-dimensional morphism $phi$ defined on $mathcal{A}$; as the Wang shift $Omega_mathcal{U}$ defined by a set $mathcal{U}$ of 19 Wang tiles; as the symbolic dynamical system $mathcal{X}_{mathcal{P}_mathcal{U},R_mathcal{U}}$ representing the orbits under some $mathbb{Z}^2$-action $R_mathcal{U}$ defined by rotations on $mathbb{T}^2$ and coded by some topological partition $mathcal{P}_mathcal{U}$ of $mathbb{T}^2$ into 19 polygonal atoms. We prove their equality $Omega_mathcal{U} =mathcal{X}_phi=mathcal{X}_{mathcal{P}_mathcal{U},R_mathcal{U}}$ by showing they are self-similar with respect to the substitution $phi$. This chapter provides a transversal reading of results divided into four different articles obtained through the study of the Jeandel-Rao Wang shift. It gathers in one place the methods introduced to desubstitute Wang shifts and to desubstitute codings of $mathbb{Z}^2$-actions by focussing on a simple 2-dimensional self-similar subshift. SageMath code to find marker tiles and compute the Rauzy induction of $mathbb{Z}^2$-rotations is provided allowing to reproduce the computations.
We define a Wang tile set $mathcal{U}$ of cardinality 19 and show that the set $Omega_mathcal{U}$ of all valid Wang tilings $mathbb{Z}^2tomathcal{U}$ is self-similar, aperiodic and is a minimal subshift of $mathcal{U}^{mathbb{Z}^2}$. Thus $mathcal{U}$ is the second smallest self-similar aperiodic Wang tile set known after Ammanns set of 16 Wang tiles. The proof is based on the unique composition property. We prove the existence of an expansive, primitive and recognizable $2$-dimensional morphism $omega:Omega_mathcal{U}toOmega_mathcal{U}$ that is onto up to a shift. The proof of recognizability is done in two steps using at each step the same criteria (the existence of marker tiles) for proving the existence of a recognizable one-dimensional substitution that sends each tile either on a single tile or on a domino of two tiles.
In this paper we prove that if ${varphi_i(x)=lambda x+t_i}$ is an equicontractive iterated function system and $b$ is a positive integer satisfying $frac{log b}{log |lambda|} otinmathbb{Q},$ then almost every $x$ is normal in base $b$ for any non-atomic self-similar measure of ${varphi_i}$.
We construct a minimal dynamical system of mean dimension equal to $1$, which can be embedded in the shift action on the Hilbert cube $[0,1]^mathbb{Z}$. Our result clarifies a seemingly plausible impression and finally enables us to have a full understanding of (a pair of) the exact ranges of all possible values of mean dimension, within which there will always be a minimal dynamical system that can be (resp. cannot be) embedded in the shift action on the Hilbert cube. The key ingredient of our idea is to produce a dense subset of the alphabet $[0,1]$ more gently.
For self-similar sets on $mathbb{R}$ satisfying the exponential separation condition we show that the natural projections of shift invariant ergodic measures is equal to $min{1,frac{h}{-chi}}$, where $h$ and $chi$ are the entropy and Lyapunov exponent respectively. The proof relies on Shmerkins recent result on the $L^{q}$ dimension of self-similar measures. We also use the same method to give results on convolutions and orthogonal projections of ergodic measures projected onto self-similar sets.
A recent result of Downarowicz and Serafin (DS) shows that there exist positive entropy subshifts satisfying the assertion of Sarnaks conjecture. More precisely, it is proved that if $y=(y_n)_{nge 1}$ is a bounded sequence with zero average along every infinite arithmetic progression (the Mobius function is an example of such a sq $y$) then for every $Nge 2$ there exists a subshift $Sigma$ over $N$ symbols, with entropy arbitrarily close to $log N$, uncorrelated to $y$. In the present note, we improve the result of (DS). First of all, we observe that the uncorrelation obtained in (DS) is emph{uniform}, i.e., for any continuous function $f:Sigmato {mathbb R}$ and every $epsilon>0$ there exists $n_0$ such that for any $nge n_0$ and any $xinSigma$ we have $$ left|frac1nsum_{i=1}^{n}f(T^ix),y_iright|<epsilon. $$ More importantly, by a fine-tuned modification of the construction from (DS) we create a emph{strictly ergodic} subshift, with all the desired properties of the example in (DS) (uniformly uncorrelated to $y$ and with entropy arbitrarily close to $log N$). The question about these two additional properties (uniformity of uncorrelation and strict ergodicity) has been posed by Mariusz Lemanczyk in the context of the so-called strong MOMO (Mobius Orthogonality on Moving Orbits) property. Our result shows, among other things, that strong MOMO is essentially stronger than uniform uncorrelation, even for strictly ergodic systems.