Do you want to publish a course? Click here

Linking entanglement to discord with state extensions

75   0   0.0 ( 0 )
 Added by Chunhe Xiong
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the fundamental problem to explore the potential and advantage of quantum technology is the char acterization and quantification of the quantum correlations, especially entanglement. In [Phys. Rev. A 94, 032129 (2016)], the author proposed the minimal discord over state extensions as the measure of entanglement. In this work, we show that the minimal Bures distance of discord over state extensions is equivalent to the Bures distance of entanglement and its convex roof. This equivalence puts discord in a more primitive place than entanglement conceptually, that is, entanglement can be interpreted as the irreducible part of discord over all state extensions. Moreover, for bipartite state, we also show that the minimal quantum discord over a kind of symmetric state extensions is an entanglement monotone, i.e., non-increasing under local operation and classical communications. The results presented here show that a large class of discord measures can be used to construct entanglement measures. In particular, although Hilbert-Schmidt distance is not contractive, our result show that the corresponding quantification is an entanglement monotone in our framework.



rate research

Read More

Quantum correlations represent a fundamental tool for studies ranging from basic science to quantum technologies. Different non-classical correlations have been identified and studied, as entanglement and discord. In this Paper we explore experimentally the rich geometry of polarization Bell-diagonal states. By taking advantage of the statistical method of generation, the values of entanglement and discord along different trajectories in the space of the parameters of density matrix have been measured. The effects of sudden death of entanglement and complete freeze of discord were investigated in order to detect the domains with different domination of one type of quantum correlation against to other. A geometric interpretation for each considered phenomena is addressed. The observed good agreement between experiment and theory for all investigated trajectories ensures the reliability of this method.
Establishing entanglement between distant parties is one of the most important problems of quantum technology, since long-distance entanglement is an essential part of such fundamental tasks as quantum cryptography or quantum teleportation. In this lecture we review basic properties of entanglement and quantum discord, and discuss recent results on entanglement distribution and the role of quantum discord therein. We also review entanglement distribution with separable states, and discuss important problems which still remain open. One such open problem is a possible advantage of indirect entanglement distribution, when compared to direct distribution protocols.
We present an experimentally feasible and efficient method for detecting entangled states with measurements that extend naturally to a tomographically complete set. Our detection criterion is based on measurements from subsets of a quantum 2-design, e.g., mutually unbiased bases or symmetric informationally complete states, and has several advantages over standard entanglement witnesses. First, as more detectors in the measurement are applied, there is a higher chance of witnessing a larger set of entangled states, in such a way that the measurement setting converges to a complete setup for quantum state tomography. Secondly, our method is twice as effective as standard witnesses in the sense that both upper and lower bounds can be derived. Thirdly, the scheme can be readily applied to measurement-device-independent scenarios.
Dissimilar notions of quantum correlations have been established, each being motivated through particular applications in quantum information science and each competing for being recognized as the most relevant measure of quantumness. In this contribution, we experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord. We certify the presence of such quantum correlations via negativities in the regularized two-mode Glauber-Sudarshan function. Our data show compatibility with an incoherent mixture of orthonormal photon-number states, ruling out quantum coherence and other kinds of quantum resources. By construction, the quantumness of our state is robust against dephasing, thus requiring fewer experimental resources to ensure stability. In addition, we theoretically show how multimode entanglement can be activated based on the generated, nonentangled state. Therefore, we implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
Quantum correlations represent a fundamental tool for studies ranging from basic science to quantum technologies. Different non-classical correlations have been identified and studied, as entanglement and discord. In view of future applications in this letter we explore experimentally the rich geometry of Bell-diagonal states, measuring the values of entanglement and discord and highlighting the effect of decoherence in real experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا