In this paper we calculate analytically the perturbative matching coefficients for unpolarized quark and gluon Transverse-Momentum-Dependent (TMD) Parton Distribution Functions (PDFs) and Fragmentation Functions (FFs) through Next-to-Next-to-Next-to-Leading Order (N$^3$LO) in QCD. The N$^3$LO TMD PDFs are calculated by solving a system of differential equation of Feynman and phase space integrals. The TMD FFs are obtained by analytic continuation from space-like quantities to time-like quantities, taking into account the probability interpretation of TMD PDFs and FFs properly. The coefficient functions for TMD FFs exhibit double logarithmic enhancement at small momentum fraction $z$. We resum such logarithmic terms to the third order in the expansion of $alpha_s$. Our results constitute important ingredients for precision determination of TMD PDFs and FFs in current and future experiments.
We compute the unpolarized quark and gluon transverse-momentum dependent fragmentation functions (TMDFFs) at next-to-next-to-next-to-leading order (N$^3$LO) in perturbative QCD. The calculation is based on a relation between the TMDFF and the limit of the semi-inclusive deep inelastic scattering cross section where all final-state radiation becomes collinear to the detected hadron. The required cross section is obtained by analytically continuing our recent computation of the Drell-Yan and Higgs boson production cross section at N$^3$LO expanded around the limit of all final-state radiation becoming collinear to one of the initial states. Our results agree with a recent independent calculation by Luo et al.
We compute the quark and gluon transverse momentum dependent parton distribution functions at next-to-next-to-next-to-leading order (N$^3$LO) in perturbative QCD. Our calculation is based on an expansion of the differential Higgs boson and Drell-Yan production cross sections about their collinear limit. This method allows us to employ cutting edge techniques for the computation of cross sections to extract the universal building blocks in question. The corresponding perturbative matching kernels for all channels are expressed in terms of simple harmonic polylogarithms up to weight five. As a byproduct, we confirm a previous computation of the soft function for transverse momentum factorization at N$^3$LO. Our results are the last missing ingredient to extend the $q_T$ subtraction methods to N$^3$LO and to obtain resummed $q_T$ spectra at N$^3$LL$^prime$ accuracy both for gluon as well as for quark initiated processes.
In the TMD approach, the average transverse momentum of the unpolarised TMD PDFs and FFs is crucial not only to reproduce unpolarised cross sections and hadron multiplicities, but also for the understanding of azimuthal and spin asymmetries. Information on these transverse momenta is nowadays obtained mainly by fitting multiplicities data for SIDIS, where the intrinsic motion in the initial parton distributions and in the hadronisation process are strongly correlated and difficult to estimate separately without ambiguities. In this contribution we discuss the consequences of this correlation effects on the predictions for the Sivers and Collins asymmetries measured in SIDIS and $e^+e^-$ annihilations, and under active investigation for Drell-Yan processes at RHIC and at CERN by the COMPASS experiment. We show that these effects may be relevant and can sensibly modify the size of the predicted asymmetries. Therefore, they must be taken into careful account when investigating other aspects of TMDs, like the evolution properties of the Sivers and Collins functions and the expected process dependence of the Sivers function.
We present the analytic formula for the Energy-Energy Correlation (EEC) in electron-positron annihilation computed in perturbative QCD to next-to-next-to-next-to-leading order (N$^3$LO) in the back-to-back limit. In particular, we consider the EEC arising from the annihilation of an electron-positron pair into a virtual photon as well as a Higgs boson and their subsequent inclusive decay into hadrons. Our computation is based on a factorization theorem of the EEC formulated within Soft-Collinear Effective Theory (SCET) for the back-to-back limit. We obtain the last missing ingredient for our computation - the jet function - from a recent calculation of the transverse-momentum dependent fragmentation function (TMDFF) at N$^3$LO. We combine the newly obtained N$^3$LO jet function with the well known hard and soft function to predict the EEC in the back-to-back limit. The leading transcendental contribution of our analytic formula agrees with previously obtained results in $mathcal{N} = 4$ supersymmetric Yang-Mills theory. We obtain the $N=2$ Mellin moment of the bulk region of the EEC using momentum sum rules. Finally, we obtain the first resummation of the EEC in the back-to-back limit at N$^3$LL$^prime$ accuracy, resulting in a factor of $sim 4$ reduction of uncertainties in the peak region compared to N$^3$LL predictions.
We present a comprehensive impact study of future Electron-Ion Collider (EIC) data for parity-conserving and parity-violating polarization asymmetries on quark and gluon helicity distributions in the proton. The study, which is based on the JAM Monte Carlo global QCD analysis framework, explores the role of the extrapolation uncertainty and SU(3) flavor symmetry constraints in the simulated double-spin asymmetry, $A_{LL}$, at small parton momentum fractions $x$ and its effect on the extracted parton polarizations. We find that different assumptions about $A_{LL}$ extrapolations and SU(3) symmetry can have significant consequences for the integrated quark and gluon polarizations, for polarized proton, deuteron and $^3$He beams. For the parity-violating asymmetry, $A_{UL}$, we study the potential impact on the polarized strange quark distribution with different extrapolations of $A_{UL}$, finding the constraining power to be ultimately limited by the EIC machine luminosity.