Do you want to publish a course? Click here

Primitive Model Electrolytes in the Near and Far Field: Decay Lengths from DFT and Simulations

117   0   0.0 ( 0 )
 Added by Peter Cats MSc.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inspired by recent experimental observations of anomalously large decay lengths in concentrated electrolytes, we revisit the Restricted Primitive Model (RPM) for an aqueous electrolyte. We investigate the asymptotic decay lengths of the one-body ionic density profiles for the RPM in contact with a planar electrode using classical Density Functional Theory (DFT), and compare these with the decay lengths of the corresponding two-body correlation functions in bulk systems, obtained in previous Integral Equation Theory (IET) studies. Extensive Molecular Dynamics (MD) simulations are employed to complement the DFT and IET predictions. Our DFT calculations incorporate electrostatic interactions between the ions using three different (existing) approaches: one based on the simplest mean field treatment of Coulomb interactions (MFC), whilst the other two employ the Mean Spherical approximation (MSA). The MSAc invokes only the MSA bulk direct correlation function whereas the MSAu also incorporates the MSA bulk internal energy. Although MSAu yields profiles that agree best with MD simulations in the near field, in the far field we observe that the decay lengths are consistent between IET, MSAc, and MD simulations, whereas those from MFC and MSAu deviate significantly. Using DFT we calculated the solvation force, which relates directly to surface force experiments. We find that its decay length is neither qualitatively nor quantitatively close to the large decay lengths measured in experiments and conclude that the latter cannot be accounted for by the primitive model. The anomalously large decay lengths found in surface force measurements require an explanation that lies beyond primitive models.



rate research

Read More

The pair-correlation functions for fluid ionic mixtures in arbitrary spatial dimensions are computed in hypernetted chain (HNC) approximation. In the primitive model, all ions are approximated as non-overlapping hyperspheres with Coulomb interactions. Our spectral HNC solver is based on a Fourier-Bessel transform introduced by Talman [J. Comput. Phys., 29, 35 (1978)], with logarithmically spaced computational grids. Numeric efficiency for arbitrary spatial dimensions is a commonly exploited virtue of this transform method. Here, we highlight another advantage of logarithmic grids, consisting in efficient sampling of pair-correlation functions for highly asymmetric ionic mixtures. For three-dimensional fluids, ion size- and charge-ratios larger than one thousand can be treated, corresponding to hitherto computationally not accessed micrometer-sized colloidal spheres in 1-1 electrolyte. Effective colloidal charge numbers are extracted from our primitive model results. For moderately large ion size- and charge-asymmetries, we present Molecular Dynamics simulation results that agree well with the approximate HNC pair correlations.
Understanding how electrolyte solutions behave out of thermal equilibrium is a long-standing endeavor in many areas of chemistry and biology. Although mean-field theories are widely used to model the dynamics of electrolytes, it is also important to characterize the effects of fluctuations in these systems. In a previous work, we showed that the dynamics of the ions in a strong electrolyte that is driven by an external electric field can generate long-ranged correlations manifestly different from the equilibrium screened correlations; in the nonequilibrium steady state, these correlations give rise to a novel long-range fluctuation-induced force (FIF). Here, we extend these results by considering the dynamics of the strong electrolyte after it is quenched from thermal equilibrium upon the application of a constant electric field. We show that the asymptotic long-distance limit of both charge and density correlations is generally diffusive in time. These correlations give rise to long-ranged FIFs acting on the neutral confining plates with long-time regimes that are governed by power-law temporal decays toward the steady-state value of the force amplitude. These findings show that nonequilibrium fluctuations have nontrivial implications on the dynamics of objects immersed in a driven electrolyte, and they could be useful for exploring new ways of controlling long-distance forces in charged solutions.
A novel integral equations approach is applied for studying ion pairing in the restricted primitive model (RPM) electrolyte, i. e., the three point extension (TPE) to the Ornstein-Zernike integral equations. In the TPE approach, the three-particle correlation functions $g^{[3]}({bf r}_{1},{bf r}_{2},{bf r}_{3})$ are obtained. The TPE results are compared to molecular dynamics (MD) simulations and other theories. Good agreement between TPE and MD is observed for a wide range of parameters, particularly where standard integral equations theories fail, i. e., low salt concentration and high ionic valence. Our results support the formation of ion pairs and aligned ion complexes.
A lattice model is presented for the simulation of dynamics in polymeric systems. Each polymer is represented as a chain of monomers, residing on a sequence of nearest-neighbor sites of a face-centered-cubic lattice. The polymers are self- and mutually avoiding walks: no lattice site is visited by more than one polymer, nor revisited by the same polymer after leaving it. The dynamics occurs through single-monomer displacements over one lattice spacing. To demonstrate the high computational efficiency of the model, we simulate a dense binary polymer mixture with repelling nearest-neighbor interactions between the two types of polymers, and observe the phase separation over a long period of time. The simulations consist of a total of 46,080 polymers, 100 monomers each, on a lattice with 13,824,000 sites, and an interaction strength of 0.1 kT. In the final two decades of time, the domain-growth is found to be d(t) ~ t^1/3, as expected for a so-called Model B system.
We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-like fluctuation-induced force between neutral boundaries that confine the ions; this force is controlled by the external electric field, and it can be both attractive and repulsive with similar boundary conditions, unlike other long-range fluctuation-induced forces. This work highlights the importance of nonequilibrium correlations in electrolytes and shows how they can be used to tune interactions between uncharged biological or synthetic structures at large separations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا