Do you want to publish a course? Click here

Building manifolds from quantum codes

108   0   0.0 ( 0 )
 Added by Matthew Hastings
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We give a procedure for reverse engineering a closed, simply connected, Riemannian manifold with bounded local geometry from a sparse chain complex over $mathbb{Z}$. Applying this procedure to chain complexes obtained by lifting recently developed quantum codes, which correspond to chain complexes over $mathbb{Z}_2$, we construct the first examples of power law $mathbb{Z}_2$ systolic freedom. As a result that may be of independent interest in graph theory, we give an efficient randomized algorithm to construct a weakly fundamental cycle basis for a graph, such that each edge appears only polylogarithmically times in the basis. We use this result to trivialize the fundamental group of the manifold we construct.



rate research

Read More

95 - J.-F. Lafont , B. Schmidt 2006
We study compact Riemannian manifolds for which the light between any pair of points is blocked by finitely many point shades. Compact flat Riemannian manifolds are known to have this finite blocking property. We conjecture that amongst compact Riemannian manifolds this finite blocking property characterizes the flat metrics. Using entropy considerations, we verify this conjecture amongst metrics with nonpositive sectional curvatures. Using the same approach, K. Burns and E. Gutkin have independently obtained this result. Additionally, we show that compact quotients of Euclidean buildings have the finite blocking property. On the positive curvature side, we conjecture that compact Riemannian manifolds with the same blocking properties as compact rank one symmetric spaces are necessarily isometric to a compact rank one symmetric space. We include some results providing evidence for this conjecture.
We prove the Singer conjecture for extended graph manifolds and pure complex-hyperbolic higher graph manifolds with residually finite fundamental groups. In real dimension three, where a result of Hempel ensures that the fundamental group is always residually finite, we then provide a Price type inequality proof of a well-known result of Lott and Lueck. Finally, we give several classes of higher graph manifolds which do indeed have residually finite fundamental groups.
In this paper, we completely classify all compact 4-manifolds with positive isotropic curvature. We show that they are diffeomorphic to $mathbb{S}^4,$ or $mathbb{R}mathbb{P}^4$ or quotients of $mathbb{S}^3times mathbb{R}$ by a cocompact fixed point free subgroup of the isometry group of the standard metric of $mathbb{S}^3times mathbb{R}$, or a connected sum of them.
134 - Ren Guo , Zheng Huang , Biao Wang 2009
An almost Fuchsian 3-manifold is a quasi-Fuchsian manifold which contains an incompressible closed minimal surface with principal curvatures in the range of $(-1,1)$. Such a 3-manifold $M$ admits a foliation of parallel surfaces, whose locus in Teichm{u}ller space is represented as a path $gamma$, we show that $gamma$ joins the conformal structures of the two components of the conformal boundary of $M$. Moreover, we obtain an upper bound for the Teichm{u}ller distance between any two points on $gamma$, in particular, the Teichm{u}ller distance between the two components of the conformal boundary of $M$, in terms of the principal curvatures of the minimal surface in $M$. We also establish a new potential for the Weil-Petersson metric on Teichm{u}ller space.
For a homotopically energy-minimizing map $u: N^3to S^1$ on a compact, oriented $3$-manifold $N$ with boundary, we establish an identity relating the average Euler characteristic of the level sets $u^{-1}{theta}$ to the scalar curvature of $N$ and the mean curvature of the boundary $partial N$. As an application, we obtain some natural geometric estimates for the Thurston norm on $3$-manifolds with boundary, generalizing results of Kronheimer-Mrowka and the second named author from the closed setting. By combining these techniques with results from minimal surface theory, we obtain moreover a characterization of the Thurston norm via scalar curvature and the harmonic norm for general closed, oriented three-manifolds, extending Kronheimer and Mrowkas characterization for irreducible manifolds to arbitrary topologies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا