No Arabic abstract
In this article we present three robust instability mechanisms for linear and nonlinear inverse problems. All of these are based on strong compression properties (in the sense of singular value or entropy number bounds) which we deduce through either strong global smoothing, only weak global smoothing or microlocal smoothing for the corresponding forward operators, respectively. As applications we for instance present new instability arguments for unique continuation, for the backward heat equation and for linear and nonlinear Calderon type problems in general geometries, possibly in the presence of rough coefficients. Our instability mechanisms could also be of interest in the context of control theory, providing estimates on the cost of (approximate) controllability in rather general settings.
In this paper we introduce the randomised stability constant for abstract inverse problems, as a generalisation of the randomised observability constant, which was studied in the context of observability inequalities for the linear wave equation. We study the main properties of the randomised stability constant and discuss the implications for the practical inversion, which are not straightforward.
We first formulate an inverse problem for a linear fractional Lame system. We determine the Lame parameters from exterior partial measurements of the Dirichlet-to-Neumann map. We further study an inverse obstacle problem as well as an inverse problem for a nonlinear fractional Lame system. Our arguments are based on the unique continuation property for the fractional operator as well as the associated Runge approximation property.
We consider inverse boundary value problems for general real principal type differential operators. The first results state that the Cauchy data set uniquely determines the scattering relation of the operator and bicharacteristic ray transforms of lower order coefficients. We also give two different boundary determination methods for general operators, and prove global uniqueness results for determining coefficients in nonlinear real principal type equations. The article presents a unified approach for treating inverse boundary problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.
Given two arbitrary sequences $(lambda_j)_{jge 1}$ and $(mu_j)_{jge 1}$ of real numbers satisfying $$|lambda_1|>|mu_1|>|lambda_2|>|mu_2|>...>| lambda_j| >| mu_j| to 0 ,$$ we prove that there exists a unique sequence $c=(c_n)_{ninZ_+}$, real valued, such that the Hankel operators $Gamma_c$ and $Gamma_{tilde c}$ of symbols $c=(c_{n})_{nge 0}$ and $tilde c=(c_{n+1})_{nge 0}$ respectively, are selfadjoint compact operators on $ell^2(Z_+)$ and have the sequences $(lambda_j)_{jge 1}$ and $(mu_j)_{jge 1}$ respectively as non zero eigenvalues. Moreover, we give an explicit formula for $c$ and we describe the kernel of $Gamma_c$ and of $Gamma_{tilde c}$ in terms of the sequences $(lambda_j)_{jge 1}$ and $(mu_j)_{jge 1}$. More generally, given two arbitrary sequences $(rho_j)_{jge 1}$ and $(sigma_j)_{jge 1}$ of positive numbers satisfying $$rho_1>sigma_1>rho_2>sigma_2>...> rho_j> sigma_j to 0 ,$$ we describe the set of sequences $c=(c_n)_{ninZ_+}$ of complex numbers such that the Hankel operators $Gamma_c$ and $Gamma_{tilde c}$ are compact on $ell ^2(Z_+)$ and have sequences $(rho_j)_{jge 1}$ and $(sigma_j)_{jge 1}$ respectively as non zero singular values.
We study the inverse electrostatic and elasticity problems associated with Poisson and Navier equations. The uniqueness of solutions of these problems is proved for piecewise constant electric charge and internal stress distributions having a checkered structure: they are constant on rectangular blocks. Such distributions appear naturally in practical applications. We also discuss computational challenges arising in the numerical implementation of our method.