This paper discusses the temperature-dependent properties of (GaIn)As/Ga(AsSb)/(GaIn)As W-quantum well heterostructures for laser applications based on theoretical modeling as well as experimental findings. A microscopic theory is applied to discuss band bending effects giving rise to the characteristic blue shift with increasing charge carrier density observed in type-II heterostructures. Furthermore, gain spectra for a W-quantum well heterostructure are calculated up to high charge carrier densities. At these high charge carrier densities, the interplay between multiple type-II transitions results in broad and flat gain spectra with a spectral width of approximately 160 nm. Furthermore, the temperature-dependent properties of broad-area edge-emitting lasers are analyzed using electroluminescence as well as laser characteristic measurements. A first indication for the theoretically predicted broad gain spectra is presented and the interplay between the temperature-dependent red shift and the charge carrier density-dependent blue shift is discussed. A combination of these effects results in a significant reduction of the temperature-induced red shift of the emission wavelengths and even negative shift rates of (-0.10 plusminus 0.04) nm/K are achieved.