We present a comprehensive insight into counting distributions from the perspective of the combinants extracted from them. In particular, we focus on cases where these combinants exhibit oscillatory behavior that can provide an invaluable new source of information about the dynamics of the process under study. We show that such behavior can be described only by specific combinations of compound distributions based on the Binomial Distribution and provide their analytical forms which can be used in further investigations and which can be helpful in the analysis of all other types of counting distributions.
The experimentally measured multiplicity distributions exhibit, after closer inspection, peculiarly enhanced void probability and oscillatory behavior of the modified combinants. We show that both these features can be used as additional sources of information, not yet fully explored, on the mechanism of multiparticle production. We provide their theoretical understanding within the class of compound distributions.
It has been shown recently that additional information can be obtained from charged particle multiplicity distribution by investigating their modified combinants $C_j$, which exhibit periodic oscillatory behaviour. The modified combinants obtained from experimental data can be expressed in a recurrent form involving the probability of obtaining $N$ charged particles $P(N)$, scaled by the void probability $P(0)$. The effects of various experimental observables such as $|eta|$, $p_T$ and centre-of-mass collision energy $sqrt{s}$ on the oscillatory behaviour of $C_j$ will be discussed.
As shown recently, one can obtain additional information from the measured charged particle multiplicity distributions, $P(N)$, by investigating the so-called modified combinants, $C_j$, extracted from them. This information is encoded in the observed specific oscillatory behaviour of $C_j$, which phenomenologically can be described only by some combinations of compound distributions based on the Binomial Distribution. So far this idea has been checked in $pp$ and $e^+e^-$ processes (where observed oscillations are spectacularly strong). In this paper, we continue observation of multiparticle production from the modified combinants perspective by investigating dependencies of the observed oscillatory patterns on type of colliding particles, their energies and the phase space where they are observed. We also offer some tentative explanations based on different types of compound distributions and stochastic branching processes.
I review the current status of lattice calculations for two selected observables related to nucleon structure: the second moment of the unpolarized parton distribution, <x> (u-d), and the first moment of the polarized parton distribution, the non-singlet axial coupling gA. The major challenge is the requirement to extract them sufficiently close to the chiral limit. In the former case, there still remains a puzzling disagreement between lattice data and experiment. For the latter quantity, however, we may be close to obtaining its value from the lattice in the immediate future.
The non-observation of dark matter (DM) by direct detection experiments suggests that any new interaction of DM with the Standard Model (SM) should be very weak. One of the simplest scenarios to achieve this is a dark sector that is charged under a new $U(1)_X$ symmetry, which is kinetically mixed with the SM hypercharge $U(1)_Y$. We briefly review the status of such a minimal setup and analyze in a second step how the picture is altered if also SM fields are charged under the new symmetry. We exemplify this for the case of a gauged $U(1)_{L_mu-L_tau}$ and show that this allows for a simultaneous explanation of the $(g-2)_mu$ excess and the DM relic abundance $Omega_{DM}$. Furthermore, we discuss the potential of four-lepton and two-lepton plus missing energy signatures to test such scenarios.