Output-Feedback Symbolic Control


Abstract in English

Symbolic control is a an abstraction-based controller synthesis approach that provides, algorithmically, certifiable-by-construction controllers for cyber-physical systems. Current methodologies of symbolic control usually assume that full-state information is available. This is not suitable for many real-world applications with partially-observable states or output information. This article introduces a framework for output-feedback symbolic control. We propose relations between original systems and their symbolic models based on outputs. They enable designing symbolic controllers and refining them to enforce complex requirements on original systems. To demonstrate the effectiveness of the proposed framework, we provide three different methodologies. They are applicable to a wide range of linear and nonlinear systems, and support general logic specifications.

Download