Percolation theory has been widely used to study phase transitions in complex networked systems. It has also successfully explained several macroscopic phenomena across different fields. Yet, the existent theoretical framework for percolation places the focus on the direct interactions among the systems components, while recent empirical observations have shown that indirect interactions are common in many systems like ecological and social networks, among others. Here, we propose a new percolation framework that accounts for indirect interactions, which allows to generalize the current theoretical body and understand the role of the underlying indirect influence of the components of a networked system on its macroscopic behavior. We report a rich phenomenology in which first-order, second-order or hybrid phase transitions are possible depending on whether the links of the substrate network are directed, undirected or a mix, respectively. We also present an analytical framework to characterize the proposed induced percolation, paving the way to further understand network dynamics with indirect interactions.