Do you want to publish a course? Click here

Dispersion measure variability for 36 millisecond pulsars at 150MHz with LOFAR

376   0   0.0 ( 0 )
 Added by Julian Donner
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radio pulses from pulsars are affected by plasma dispersion, which results in a frequency-dependent propagation delay. Variations in the magnitude of this effect lead to an additional source of red noise in pulsar timing experiments, including pulsar timing arrays that aim to detect nanohertz gravitational waves. We aim to quantify the time-variable dispersion with much improved precision and characterise the spectrum of these variations. We use the pulsar timing technique to obtain highly precise dispersion measure (DM) time series. Our dataset consists of observations of 36 millisecond pulsars, which were observed for up to 7.1 years with the LOFAR telescope at a centre frequency of ~150 MHz. Seventeen of these sources were observed with a weekly cadence, while the rest were observed at monthly cadence. We achieve a median DM precision of the order of 10^-5 cm^-3 pc for a significant fraction of our sources. We detect significant variations of the DM in all pulsars with a median DM uncertainty of less than 2x10^-4 cm^-3 pc. The noise contribution to pulsar timing experiments at higher frequencies is calculated to be at a level of 0.1-10 us at 1.4 GHz over a timespan of a few years, which is in many cases larger than the typical timing precision of 1 us or better that PTAs aim for. We found no evidence for a dependence of DM on radio frequency for any of the sources in our sample. The DM time series we obtained using LOFAR could in principle be used to correct higher-frequency data for the variations of the dispersive delay. However, there is currently the practical restriction that pulsars tend to provide either highly precise times of arrival (ToAs) at 1.4 GHz or a high DM precision at low frequencies, but not both, due to spectral properties. Combining the higher-frequency ToAs with those from LOFAR to measure the infinite-frequency ToA and DM would improve the result.



rate research

Read More

We report the detection of 48 millisecond pulsars (MSPs) out of 75 observed thus far using the LOFAR in the frequency range 110-188 MHz. We have also detected three MSPs out of nine observed in the frequency range 38-77 MHz. This is the largest sample of MSPs ever observed at these low frequencies, and half of the detected MSPs were observed for the first time at frequencies below 200 MHz. We present the average pulse profiles of the detected MSPs, their effective pulse widths, and flux densities and compare these with higher observing frequencies. The flux-calibrated, multifrequency LOFAR pulse profiles are publicly available via the EPN Database of Pulsar Profiles. We also present average values of dispersion measures (DM) and discuss DM and profile variations. About 35% of the MSPs show strong narrow profiles, another 25% exhibit scattered profiles, and the rest are only weakly detected. A qualitative comparison of LOFAR profiles with those at higher radio frequencies shows constant separation between profile components. Similarly, the profile widths are consistent with those observed at higher frequencies, unless scattering dominates at the lowest frequencies. This is very different from what is observed for normal pulsars and suggests a compact emission region in the MSP magnetosphere. The amplitude ratio of the profile components, on the other hand, can dramatically change towards low frequencies, often with the trailing component becoming dominant. As previously demonstrated this can be caused by aberration and retardation. This data set enables high-precision studies of pulse profile evolution with frequency, dispersion, Faraday rotation, and scattering in the interstellar medium. Characterising and correcting these systematic effects may improve pulsar-timing precision at higher observing frequencies, where pulsar timing array projects aim to directly detect gravitational waves.
We present the results from nearly three years of monitoring of the variations in dispersion measure (DM) along the line-of-sight to 11 millisecond pulsars using the Giant Metrewave Radio Telescope (GMRT). These results demonstrate accuracies of single epoch DM estimates of the order of 5x10^(-4) cm^(-3) pc. A preliminary comparison with the Parkes Pulsar Timing Array (PPTA) data shows that the measured DM fluctuations are comparable. We show effects of DM variations due to the solar wind and solar corona and compare with the existing models.
We report on variations in the mean position angle of the 20 millisecond pulsars being observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is found that the observed variations are dominated by changes in the Faraday rotation occurring in the Earths ionosphere. Two ionospheric models are used to correct for the ionospheric contribution and it is found that one based on the International Reference Ionosphere gave the best results. Little or no significant long-term variation in interstellar RM was found with limits typically about 0.1 rad m$^{-2}$ yr$^{-1}$ in absolute value. In a few cases, apparently significant RM variations over timescales of a few 100 days or more were seen. These are unlikely to be due to localised magnetised regions crossing the line of sight since the implied magnetic fields are too high. Most probably they are statistical fluctuations due to random spatial and temporal variations in the interstellar electron density and magnetic field along the line of sight.
Radio timing observations of millisecond pulsars (MSPs) in support of Fermi LAT observations of the gamma-ray sky enhance the sensitivity of high-energy pulsation searches. With contemporaneous ephemerides we have detected gamma-ray pulsations from PSR B1937+21, the first MSP ever discovered, and B1957+20, the first known black-widow system. The two MSPs share a number of properties: they are energetic and distant compared to other gamma-ray MSPs, and both of them exhibit aligned radio and gamma-ray emission peaks, indicating co-located emission regions in the outer magnetosphere of the pulsars. However, radio observations are also crucial for revealing MSPs in Fermi unassociated sources. In a search for radio pulsations at the position of such unassociated sources, the Nanc{c}ay Radio Telescope discovered two MSPs, PSRs J2017+0603 and J2302+4442, increasing the sample of known Galactic disk MSPs. Subsequent radio timing observations led to the detection of gamma-ray pulsations from these two MSPs as well. We describe multiwavelength timing and spectral analysis of these four pulsars, and the modeling of their gamma-ray light curves in the context of theoretical models.
189 - Juri Poutanen 2009
Radiation of X-ray bursts and of accretion shocks in weakly magnetized neutron stars in low-mass X-ray binaries is produced in plane-parallel atmospheres dominated by electron scattering. We first discuss polarization produced by single (non-magnetic) Compton scattering, in particular the depolarizing effect of high electron temperature, and then the polarization due to multiply electron scattering in a slab. We further predict the X-ray pulse profiles and polarization properties of nuclear- and accretion-powered millisecond pulsars. We introduce a relativistic rotation vector model, which includes the effect of rotation of polarization plane due to the rapid motion of the hot spot as well as the light bending. Future observations of the X-ray polarization will provide a valuable tool to test the geometry of the emission region in pulsars and its physical characteristics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا