Do you want to publish a course? Click here

Investigating Analyte Co-Localization at Electromagnetic Gap Hot-Spots For Highly Sensitive (Bio)molecular Detection by Plasmon Enhanced Spectroscopies

174   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electromagnetic hot-spots at ultra-narrow plasmonic nanogaps carry immense potential to drive detection limits down to few molecules in sensors based on surface enhanced Raman or Fluorescence spectroscopies. However, leveraging the EM hot-spots requires access to the gaps, which in turn depends on the size of the analyte in relation to gap distances. Herein we leverage a well-calibrated process based on self-assembly of block copolymer colloids on full-wafer level to produce high density plasmonic nanopillar arrays exhibiting large number (> 10^10 /cm^2) of uniform inter-pillar EM hot-spots. The approach allows convenient handles to systematically vary the inter-pillar gap distances down to sub-10 nm regime. The results show compelling trends of the impact of analyte dimensions in relation to the gap distances towards their leverage over inter-pillar hot-spots, and the resulting sensitivity in SERS based molecular assays. Comparing the detection of labelled proteins in surface-enhanced Raman and metal-enhanced Fluorescence configurations further reveal the relative advantage of Fluorescence over Raman detection while encountering the spatial limitations imposed by the gaps. Quantitative assays with limits of detection down to picomolar concentrations is realized for both the small organic molecules and the proteins. The well-defined geometries delivered by nanofabrication approach is critical to arriving at realistic geometric models to establish meaningful correlation between structure, optical properties and sensitivity of nanopillar arrays in plasmonic assays. The findings emphasize the need for the rational design of EM hot-spots that take into account the analyte dimensions to drive ultra-high sensitivity in plasmon-enhanced spectroscopies.



rate research

Read More

We developed planar multilayered photonic-plasmonic structures, which support topologically protected optical states on the interface between metal and dielectric materials, known as optical Tamm states. Coupling of incident light to the Tamm states can result in perfect absorption within one of several narrow frequency bands, which is accompanied by a singular behavior of the phase of electromagnetic field. In the case of near-perfect absorptance, very fast local variation of the phase can still be engineered. In this work, we theoretically and experimentally demonstrate how these drastic phase changes can improve sensitivity of optical sensors. A planar Tamm absorber was fabricated and used to demonstrate remote near-singular-phase temperature sensing with an over an order of magnitude improvement in sensor sensitivity and over two orders of magnitude improvement in the figure of merit over the standard approach of measuring shifts of resonant features in the reflectance spectra of the same absorber. Our experimentally demonstrated phase-to-amplitude detection sensitivity improvement nearly doubles that of state-of-the-art nano-patterned plasmonic singular-phase detectors, with further improvements possible via more precise fabrication. Tamm perfect absorbers form the basis for robust planar sensing platforms with tunable spectral characteristics, which do not rely on low-throughput nano-patterning techniques.
Carbon nanotubes provide a rare access point into the plasmon physics of one-dimensional electronic systems. By assembling purified nanotubes into uniformly sized arrays, we show that they support coherent plasmon resonances, that these plasmons enhance and hybridize with phonons, and that the phonon-plasmon resonances have quality factors as high as 10. Because coherent nanotube plasmonics can strengthen light-matter interactions, it provides a compelling platform for surface-enhanced infrared spectroscopy and tunable, high-performance optical devices at the nanometer scale.
547 - Xuechao Yu , Jin Tao , Youde Shen 2014
Raman intensity of Rhodamine B (RhB) is enhanced by inserting a thin high k{appa} dielectric layer which reduces the surface plasmon damping at the gold-graphene interface. The results indicate that the Raman intensity increases sharply by plasmonic resonance enhancement while maintaining efficient fluorescence quenching with optimized dielectric layer thickness.
150 - B. Sturman , E. Podivilov , 2012
We predict the simultaneous occurrence of two fundamental phenomena for metal nanoparticles possessing sharp corners: First, the main plasmonic dipolar mode experiences strong red shift with decreasing corner curvature radius; its resonant frequency is controlled by the apex angle of the corner and the normalized (to the particle size) corner curvature. Second, the split-off plasmonic mode experiences strong localization at the corners. Altogether, this paves the way for tailoring of metal nano-structures providing wavelength-selective excitation of localized plasmons and a strong near-field enhancement of linear and nonlinear optical phenomena.
Tip-enhanced nano-spectroscopy and -imaging, such as tip-enhanced photoluminescence (TEPL), tip-enhanced Raman spectroscopy (TERS), and others, have become indispensable from materials science to single molecule studies. However, the techniques suffer from inconsistent performance due to lack of nanoscale control of tip apex structure, which often leads to irreproducible spectral, spatial, and polarization resolved imaging. Instead of refining tip-fabrication to resolve this problem, we pursue the inverse approach of optimizing the nano-optical vector-field at the tip apex via adaptive optics. Specifically, we demonstrate dynamic wavefront shaping of the excitation field to effectively couple light to the tip and adaptively control for enhanced sensitivity and polarization-controlled TEPL and TERS, with performance exceeding what can be achieved by conventional tip-fabrication and optimal excitation polarization. Employing a sequence feedback algorithm, we achieve 4.4$times$10$^4$-fold TEPL enhancement of a WSe$_2$ monolayer which is >2$times$ larger than the normal TEPL intensity without wavefront shaping, as well as the largest plasmon-enhanced PL intensity of a transition metal dichalcogenide (TMD) monolayer reported to date. In addition, with dynamical near-field polarization control in TERS, we demonstrate the investigation of conformational heterogeneity of brilliant cresyl blue (BCB) molecules as well as the controllable observation of IR-active modes due to a large gradient field effect. Adaptive tip-enhanced spectroscopy and imaging thus provides for a new systematic approach towards computational nanoscopy making optical nano-imaging more robust, versatile, and widely deployable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا