Do you want to publish a course? Click here

Real-space imaging of non-collinear antiferromagnetic order with a single spin magnetometer

109   0   0.0 ( 0 )
 Added by Vincent Jacques
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

While ferromagnets are at the heart of daily life applications, their large magnetization and resulting energy cost for switching bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem and often possess remarkable extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or produce emergent spin-orbit effects, which enable efficient spin-charge interconversion. To harness these unique traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive scanning nanomagnetometer based on a single nitrogen-vacancy (NV) defect in diamond, we demonstrate the first real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film, at room temperature. We image the spin cycloid of a multiferroic BiFeO$_3$ thin film and extract a period of $sim70$ nm, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO$_3$ to manipulate the cycloid propagation direction by an electric field. Besides highlighting the unique potential of NV magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO$_3$ can be used as a versatile platform for the design of reconfigurable nanoscale spin textures.



rate research

Read More

Antiferromagnetic materials are promising platforms for next-generation spintronics owing to their fast dynamics and high robustness against parasitic magnetic fields. However, nanoscale imaging of the magnetic order in such materials with zero net magnetization remains a major experimental challenge. Here we show that non-collinear antiferromagnetic spin textures can be imaged by probing the magnetic noise they locally produce via thermal populations of magnons. To this end, we perform nanoscale, all-optical relaxometry with a scanning quantum sensor based on a single nitrogen-vacancy (NV) defect in diamond. Magnetic noise is detected through an increase of the spin relaxation rate of the NV defect, which results in an overall reduction of its photoluminescence signal under continuous laser illumination. As a proof-of-concept, the efficiency of the method is demonstrated by imaging various spin textures in synthetic antiferromagnets, including domain walls, spin spirals and antiferromagnetic skyrmions. This imaging procedure could be extended to a large class of intrinsic antiferromagnets and opens up new opportunities for studying the physics of localized spin wave modes for magnonics.
87 - K. Chang , A. Eichler , 2016
Charge transport in nanostructures and thin films is fundamental to many phenomena and processes in science and technology, ranging from quantum effects and electronic correlations in mesoscopic physics, to integrated charge- or spin-based electronic circuits, to photoactive layers in energy research. Direct visualization of the charge flow in such structures is challenging due to their nanometer size and the itinerant nature of currents. In this work, we demonstrate non-invasive magnetic imaging of current density in two-dimensional conductor networks including metallic nanowires and carbon nanotubes. Our sensor is the electronic spin of a diamond nitrogen-vacancy center attached to a scanning tip. Using a differential measurement technique, we detect DC currents down to a few uA above a baseline current density of 2e4 A/cm2. Reconstructed images have a spatial resolution of typically 50 nm, with a best-effort value of 22 nm. Current density imaging offers a new route for studying electronic transport and conductance variations in two-dimensional materials and devices, with many exciting applications in condensed matter physics.
289 - Fengjie Ma , Wei Ji , Jiangping Hu 2008
By the first-principles electronic structure calculations, we find that the ground state of PbO-type tetragonal $alpha$-FeTe is in a bi-collinear antiferromagnetic state, in which the Fe local moments ($sim2.5mu_B$) are ordered ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal direction on the Fe square lattice. This bi-collinear order results from the interplay among the nearest, next nearest, and next next nearest neighbor superexchange interactions $J_1$, $J_2$, and $J_3$, mediated by Te $5p$-band. In contrast, the ground state of $alpha$-FeSe is in the collinear antiferromagnetic order, similar as in LaFeAsO and BaFe$_2$As$_2$.
We present a thorough theoretical assessment of the stability of non-collinear spin arrangements in small palladium clusters. We generally find that ferromagnetic order is always preferred, but that antiferromagnetic and non-collinear configurations of different sorts exist and compete for the first excited isomers. We also show that the relative stability of all these states is rather insensitive to the choice of atomic configuration for the pseudopotential used and to the approximation taken for the exchange and correlation potential. This result stands in stark contrast with the situation found for the bulk phases of palladium.
95 - J. J. Deng 2021
The non-collinear antiferromagnetic (AFM) structure makes Mn3Sn exhibit exotic properties. At present, it has been found that both the hydrostatic pressure and the strain introduced by interstitial N atoms have a great influence on this magnetic structure. Here, the effect of the residual strain (RS) on it is investigated. AC and DC magnetic measurement results suggest that Mn3Sn without RS has the non-collinear AFM structure only in the temperature range of 285 K to 400 K; while Mn3Sn with RS has a non-coplanar AFM structure in the entire temperature range from 5 K to 400 K. Both anomalous Hall effect and topological Hall effect appears in Mn3Sn with RS, supporting the anticipated non-coplanar AFM structure. Our findings point out a method to realize the chiral non-coplanar AFM structure through the engineering, thereby providing a path for the construction of topological antiferromagnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا