Do you want to publish a course? Click here

Laser-Inscribed Diamond Waveguide Resonantly Coupled to Diamond Microsphere

290   0   0.0 ( 0 )
 Added by Vibhav Bharadwaj
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

An all-diamond photonic circuit was implemented by integrating a diamond microsphere with a femtosecond-laser-written bulk diamond waveguide. The near surface waveguide was fabricated by exploiting the Type II fabrication method to achieve stress-induced waveguiding. Transverse electrically and transverse magnetically polarized light from a tunable laser operating in the near-infrared region was injected into the diamond waveguide, which when coupled to the diamond microsphere showed whispering-gallery modes with a spacing of 0.33 nm and high-quality factors of 105. By carefully engineering these high-quality factor resonances, and further exploiting the properties of existing nitrogen-vacancy centers in diamond microspheres and diamond waveguides in such configurations, it should be possible to realize filtering, sensing and nonlinear optical applications in integrated diamond photonics.



rate research

Read More

Optomechanical devices sensitively transduce and actuate motion of nanomechanical structures using light. Single--crystal diamond promises to improve the performance of optomechanical devices, while also providing opportunities to interface nanomechanics with diamond color center spins and related quantum technologies. Here we demonstrate dissipative waveguide--optomechanical coupling exceeding 35 GHz/nm to diamond nanobeams supporting both optical waveguide modes and mechanical resonances, and use this optomechanical coupling to measure nanobeam displacement with a sensitivity of $9.5$ fm/$sqrt{text{Hz}}$ and optical bandwidth $>150$nm. The nanobeams are fabricated from bulk optical grade single--crystal diamond using a scalable undercut etching process, and support mechanical resonances with quality factor $2.5 times 10^5$ at room temperature, and $7.2 times 10^5$ in cryogenic conditions (5K). Mechanical self--oscillations, resulting from interplay between photothermal and optomechanical effects, are observed with amplitude exceeding 200 nm for sub-$mu$W absorbed optical power, demonstrating the potential for optomechanical excitation and manipulation of diamond nanomechanical structures.
Diamond has attracted great interest as a quantum technology platform thanks to its optically active nitrogen vacancy center (NV). The NVs ground state spin can be read out optically exhibiting long spin coherence times of about 1 ms even at ambient temperatures. In addition, the energy levels of the NV are sensitive to external fields. These properties make NVs attractive as a scalable platform for efficient nanoscale resolution sensing based on electron spins and for quantum information systems. Diamond photonics enhances optical interaction with NVs, beneficial for both quantum sensing and information. Diamond is also compelling for microfluidic applications due to its outstanding biocompatibility, with sensing functionality provided by NVs. However, it remains a significant challenge to fabricate photonics, NVs and microfluidics in diamond. In this Report, an overview is provided of ion irradiation and femtosecond laser writing, two promising fabrication methods for diamond based quantum technological devices. The unique capabilities of both techniques are described, and the most important fabrication results of color center, optical waveguide and microfluidics in diamond are reported, with an emphasis on integrated devices aiming towards high performance quantum sensors and quantum information systems of tomorrow
High-power lasers have numerous scientific and industrial applications. Some key areas include laser cutting and welding in manufacturing, directed energy in fusion reactors or defense applications, laser surgery in medicine, and advanced photolithography in the semiconductor industry. These applications require optical components, in particular mirrors, that withstand high optical powers for directing light from the laser to the target. Ordinarily, mirrors are comprised of multilayer coatings of different refractive index and thickness. At high powers, imperfections in these layers lead to absorption of light, resulting in thermal stress and permanent damage to the mirror. Here we design, simulate, fabricate, and demonstrate monolithic and highly reflective dielectric mirrors which operate under high laser powers without damage. The mirrors are realized by etching nanostructures into the surface of single-crystal diamond, a material with exceptional optical and thermal properties. We measure reflectivities of greater than 98% and demonstrate damage-free operation using 10 kW of continuous-wave laser light at 1070 nm, with intensities up to 4.6 MW/cm2. In contrast, at these laser powers, we observe damage to a standard dielectric mirror based on optical coatings. Our results initiate a new category of broadband optics that operate in extreme conditions.
Random lasers use radiative gain and multiple scatterers in disordered media to generate light amplification. In this study, we demonstrate a random laser based on diamond nanoneedles that act as scatterers in combination with fluorescent dye molecules that serve as a gain medium. Random lasers realized using diamond possess high spectral radiance with angle-free emission and thresholds of 0.16 mJ. The emission dependence on the pillar diameter and density is investigated, and optimum lasing conditions are measured for pillars with spacing and density of 336 nm and ~ 2.9x10^10 cm-2. Our results expand the application space of diamond as a material platform for practical, compact photonic devices and sensing applications.
We demonstrate optical coupling between a single tin-vacancy (SnV) center in diamond and a free-standing photonic crystal nanobeam cavity. The cavities are fabricated using quasi-isotropic etching and feature experimentally measured quality factors as high as ~11,000. We investigate the dependence of a single SnV centers emission by controlling the cavity wavelength using a laser-induced gas desorption technique. Under resonance conditions, we observe an intensity enhancement of the SnV emission by a factor of 12 and a 16-fold reduction of the SnV lifetime. Based on the large enhancement of the SnV emission rate inside the cavity, we estimate the Purcell factor for the SnV zero-phonon line to be 37 and the coupling efficiency of the SnV center to the cavity, the beta factor, to be 95%. Our work paves the way for the realization of quantum photonic devices and systems based on efficient photonic interfaces using the SnV color center in diamond.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا