Do you want to publish a course? Click here

Many-body wavefunctions for quantum impurities out of equilibrium. II. Charge fluctuations

193   0   0.0 ( 0 )
 Added by Adrian Culver
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We extend the general formalism discussed in the previous paper [A. B. Culver and N. Andrei, Phys. Rev. B 103, 195106 (2021)] to two models with charge fluctuations: the interacting resonant level model and the Anderson impurity model. In the interacting resonant level model, we find the exact time-evolving wavefunction and calculate the steady state impurity occupancy to leading order in the interaction. In the Anderson impurity model, we find the nonequilibrium steady state for small or large Coulomb repulsion $U$, and we find that the steady state current to leading order in $U$ agrees with a Keldysh perturbation theory calculation.



rate research

Read More

We present a method for calculating the time-dependent many-body wavefunction that follows a local quench. We apply the method to the voltage-driven nonequilibrium Kondo model to find the exact time-evolving wavefunction following a quench where the dot is suddenly attached to the leads at $t=0$. The method, which does not use Bethe ansatz, also works in other quantum impurity models (we include results for the interacting resonant level and the Anderson impurity model) and may be of wider applicability. In the particular case of the Kondo model, we show that the long-time limit (with the system size taken to infinity first) of the time-evolving wavefunction is a current-carrying nonequilibrium steady state that satisfies the Lippmann-Schwinger equation. We show that the electric current in the time-evolving wavefunction is given by a series expression that can be expanded either in weak coupling or in strong coupling, converging to all orders in the steady-state limit in either case. The series agrees to leading order with known results in the well-studied regime of weak antiferromagnetic coupling and also reveals another universal regime of strong ferromagnetic coupling, with Kondo temperature $T_K^{(F)} = D e^{-frac{3pi^2}{8} rho |J|}$ ($J<0$, $rho|J|toinfty$). In this regime, the differential conductance $dI/dV$ reaches the unitarity limit $2e^2/h$ asymptotically at large voltage or temperature.
We present here the details of a method [A. B. Culver and N. Andrei, Phys. Rev. B 103, L201103 (2021)] for calculating the time-dependent many-body wavefunction that follows a local quench. We apply the method to the voltage-driven nonequilibrium Kondo model to find the exact time-evolving wavefunction following a quench where the dot is suddenly attached to the leads at $t=0$. The method, which does not use Bethe ansatz, also works in other quantum impurity models and may be of wider applicability. We show that the long-time limit (with the system size taken to infinity first) of the time-evolving wavefunction of the Kondo model is a current-carrying nonequilibrium steady state that satisfies the Lippmann-Schwinger equation. We show that the electric current in the time-evolving wavefunction is given by a series expression that can be expanded either in weak coupling or in strong coupling, converging to all orders in the steady-state limit in either case. The series agrees to leading order with known results in the well-studied regime of weak antiferromagnetic coupling and also reveals a universal regime of strong ferromagnetic coupling with Kondo temperature $T_K^{(F)} = D e^{-frac{3pi^2}{8} rho |J|}$ ($J<0$, $rho|J|toinfty$). In this regime, the differential conductance $dI/dV$ reaches the unitarity limit $2e^2/h$ asymptotically at large voltage or temperature.
We present the real-time renormalization group (RTRG) method as a method to describe the stationary state current through generic multi-level quantum dots with a complex setup in nonequilibrium. The employed approach consists of a very rudiment approximation for the RG equations which neglects all vertex corrections while it provides a means to compute the effective dot Liouvillian self-consistently. Being based on a weak-coupling expansion in the tunneling between dot and reservoirs, the RTRG approach turns out to reliably describe charge fluctuations in and out of equilibrium for arbitrary coupling strength, even at zero temperature. We confirm this in the linear response regime with a benchmark against highly-accurate numerically renormalization group data in the exemplary case of three-level quantum dots. For small to intermediate bias voltages and weak Coulomb interactions, we find an excellent agreement between RTRG and functional renormalization group data, which can be expected to be accurate in this regime. As a consequence, we advertise the presented RTRG approach as an efficient and versatile tool to describe charge fluctuations theoretically in quantum dot systems.
310 - J. Eisert , M. Friesdorf , 2014
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instances of quantum simulations. This article provides an overview on the progress in understanding dynamical equilibration and thermalisation of closed quantum many-body systems out of equilibrium due to quenches, ramps and periodic driving. It also addresses topics such as the eigenstate thermalisation hypothesis, typicality, transport, many-body localisation, universality near phase transitions, and prospects for quantum simulations.
High order perturbation theory has seen an unexpected recent revival for controlled calculations of quantum many-body systems, even at strong coupling. We adapt integration methods using low-discrepancy sequences to this problem. They greatly outperform state-of-the-art diagrammatic Monte Carlo. In practical applications, we show speed-ups of several orders of magnitude with scaling as fast as $1/N$ in sample number $N$; parametrically faster than $1/sqrt{N}$ in Monte Carlo. We illustrate our technique with a solution of the Kondo ridge in quantum dots, where it allows large parameter sweeps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا