Inertial and gravitational effects on a geonium atom


Abstract in English

We reveal all linear order inertial and gravitational effects on a non-relativistic Dirac particle (mass $m$) on the Earth up to the order of $1/m$ in the Foldy-Wouthuysen-like expansion. Applying the result to Penning trap experiments where a Dirac particle experiences the cyclotron motion and the spin precession in a cavity, i.e., a geonium atom, we study modifications to the $g$-factor of such as the electron. It is shown that each correction from gravity has different dependence on the cyclotron frequency and the mass $m$. Therefore, their magnitude change depending on situations. In a particular case of an electron $g$-factor measurement, the dominant correction to the observed $g$-factor comes from effects of the Earths rotation, which is $delta g / 2 simeq 5.2 times 10^{-17}$. It may be detectable in the near future.

Download