No Arabic abstract
The nanostructure of two novel sulfur containing dimer materials has been investigated experimentally by hard and by resonant tender X-ray scattering techniques. On cooling the dimers through the nematic to twist-bend nematic (N-NTB) phase transition, the correlation length associated with short-range positional order drops, while the heliconical orientational order becomes more correlated. The heliconical pitch shows a stronger temperature dependence near the N-NTB transition than observed in previously studied dimers, such as the CBnCB series of compounds. We explain both this strong variation and the dependence of the heliconical pitch on the length of the spacer connecting the monomer units by taking into account a temperature dependent molecular bend and intermolecular overlap. and. The heliconical structure is observed even in the upper 3-4{deg}C range of the smectic phase that forms just below the NTB state. The coexistence of smectic layering and the heliconical order indicates a SmCTB -type phase where the rigid units of the dimers are tilted with respect to the layer normal in order to accommodate the bent conformation of the dimers, but the tilt direction rotates along the heliconical axis. This is potentially similar to the SmCTB phase reported by Abberley et al (Nat. Commun. 2018, 9, 228) below a SmA phase.
The nematic twist-bend (TB) phase, exhibited by certain achiral thermotropic liquid crystalline (LC) dimers, features a nanometer-scale, heliconical rotation of the average molecular long axis (director) with equally probable left- and right-handed domains. On meso to macroscopic scales, the TB phase may be considered as a stack of equivalent slabs or pseudo-layers, each one helical pitch in thickness. The long wavelength fluctuation modes should then be analogous to those of a smectic-A phase, and in particular the hydrodynamic mode combining layer compression and bending ought to be characterized by an effective layer compression elastic constant $B_{eff}$ and average director splay constant $K_1^{eff}$. The magnitude of $K_1^{eff}$ is expected to be similar to the splay constant of an ordinary nematic LC, but due to the absence of a true mass density wave, $B_{eff}$ could differ substantially from the typical value of $sim 10^6$ Pa in a conventional smectic-A. Here we report the results of a dynamic light scattering study, which confirms the pseudo-layer structure of the TB phase with $B_{eff}$ in the range $sim 10^3-10^4$ Pa. We show additionally that the temperature dependence of $B_{eff}$ at the TB to nematic transition is accurately described by a coarse-grained free energy density, which is based on a Landau-deGennes expansion in terms of a heli-polar order parameter that characterizes the TB state and is linearly coupled to bend distortion of the director.
We report a dynamic light scattering study of the fluctuation modes in a thermotropic liquid crystalline mixture of monomer and dimer compounds that exhibits the twist-bend nematic ($mathrm{N_{TB}}$) phase. The results reveal a spectrum of overdamped fluctuations that includes two nonhydrodynamic and one hydrodynamic mode in the $mathrm{N_{TB}}$ phase, and a single nonhydrodynamic plus two hydrodynamic modes (the usual nematic optic axis or director fluctuations) in the higher temperature, uniaxial nematic phase. The properties of these fluctuations and the conditions for their observation are comprehensively explained by a Landau-deGennes expansion of the free energy density in terms of heliconical director and helical polarization fields that characterize the $mathrm{N_{TB}}$ structure, with the latter serving as the primary order parameter. A coarse-graining approximation simplifies the theoretical analysis, and enables us to demonstrate quantitative agreement between the calculated and experimentally determined temperature dependence of the mode relaxation rates.
We study the flow behaviour of a twist-bend nematic $(N_{TB})$ liquid crystal. It shows three distinct shear stress ($sigma$) responses in a certain range of temperatures and shear rates ($dot{gamma}$). In Region-I, $sigmasimsqrt{dot{gamma}}$, in region-II, the stress shows a plateau, characterised by a power law $sigmasim{dot{gamma}}^{alpha}$, where $alphasim0.1-0.4$ and in region-III, $sigmasimdot{gamma}$. With increasing shear rate, $sigma$ changes continuously from region-I to II, whereas it changes discontinuously with a hysteresis from region-II to III. In the plateau (region-II), we observe a dynamic stress fluctuations, exhibiting regular, periodic and quasiperiodic oscillations under the application of steady shear. The observed spatiotemporal dynamics in our experiments are close to those were predicted theoretically in sheared nematogenic fluids.
While twist-bend nematic phases have been extensively studied, the experimental observation of two dimensional, oscillating splay-bend phases is recent. We consider two theoretical models that have been used to explain the formation of twist-bend phases -- flexoelectricity and bond orientational order -- as mechanisms to induce splay-bend phases. Flexoelectricity is a viable mechanism, and splay and bend flexoelectric couplings can lead to splay-bend phases with different modulations. We show that while bond orientational order circumvents the need for higher order terms in the free energy, the important role of nematic symmetry and phase chirality rules it out as a basic mechanism.
Recent work indicates that twist-bend coupling plays an important role in DNA micromechanics. Here we investigate its effect on bent DNA. We provide an analytical solution of the minimum-energy shape of circular DNA, showing that twist-bend coupling induces sinusoidal twist waves. This solution is in excellent agreement with both coarse-grained simulations of minicircles and nucleosomal DNA data, which is bent and wrapped around histone proteins in a superhelical conformation. Our analysis shows that the observed twist oscillation in nucleosomal DNA, so far attributed to the interaction with the histone proteins, is an intrinsic feature of free bent DNA, and should be observable in other protein-DNA complexes.