Do you want to publish a course? Click here

The Development and Deployment of a Model for Hospital-level COVID-19 Associated Patient Demand Intervals from Consistent Estimators (DICE)

106   0   0.0 ( 0 )
 Added by Teng Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Hospitals commonly project demand for their services by combining their historical share of regional demand with forecasts of total regional demand. Hospital-specific forecasts of demand that provide prediction intervals, rather than point estimates, may facilitate better managerial decisions, especially when demand overage and underage are associated with high, asymmetric costs. Regional forecasts of patient demand are commonly available as a Poisson random variable, e.g., for the number of people requiring hospitalization due to an epidemic such as COVID-19. However, even in this common setting, no probabilistic, consistent, computationally tractable forecast is available for the fraction of patients in a region that a particular institution should expect. We introduce such a forecast, DICE (Demand Intervals from Consistent Estimators). We describe its development and deployment at an academic medical center in California during the `second wave of COVID-19 in the Unite States. We show that DICE is consistent under mild assumptions and suitable for use with perfect, biased, unbiased regional forecasts. We evaluate its performance on empirical data from a large academic medical center as well as on synthetic data.



rate research

Read More

We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic in order to inform decision-makers of future demand and assess the societal value of possible interventions. For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available. Instead, given daily admissions counts, we model aggregated counts of observed resource use, such as the number of patients in the general ward, in the intensive care unit, or on a ventilator. In order to explain how individual patient trajectories produce these counts, we propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization. We develop an Approximate Bayesian Computation approach that draws samples from the posterior distribution over the models transition and duration parameters given aggregate counts from a specific location, thus adapting the model to a region or individual hospital site of interest. Samples from this posterior can then be used to produce future forecasts of any counts of interest. Using data from the United States and the United Kingdom, we show our mechanistic approach provides competitive probabilistic forecasts for the future even as the dynamics of the pandemic shift. Furthermore, we show how our model provides insight about recovery probabilities or length of stay distributions, and we suggest its potential to answer challenging what-if questions about the societal value of possible interventions.
We propose the SH model, a simplified version of the well-known SIR compartmental model of infectious diseases. With optimized parameters and initial conditions, this time-invariant two-parameter two-dimensional model is able to fit COVID-19 hospitalization data over several months with high accuracy (mean absolute percentage error below 15%). Moreover, we observed that, when the model is trained on a suitable two-week period around the hospitalization peak for Belgium, it forecasts the subsequent three-month decrease with mean absolute percentage error below 10%. However, when it is trained in the increase phase, it is less successful at forecasting the subsequent evolution.
Since two people came down a county of north Seattle with positive COVID-19 (coronavirus-19) in 2019, the current total cases in the United States (U.S.) are over 12 million. Predicting the pandemic trend under effective variables is crucial to help find a way to control the epidemic. Based on available literature, we propose a validated Vector Autoregression (VAR) time series model to predict the positive COVID-19 cases. A real data prediction for U.S. is provided based on the U.S. coronavirus data. The key message from our study is that the situation of the pandemic will getting worse if there is no effective control.
Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalised with COVID-19 using a large dataset ($N=21{,}000-157{,}000$) from the Brazilian Sistema de Informac{c}~ao de Vigil^ancia Epidemiologica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2-17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalised log-normal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.
In this paper, we build a mechanistic system to understand the relation between a reduction in human mobility and Covid-19 spread dynamics within New York City. To this end, we propose a multivariate compartmental model that jointly models smartphone mobility data and case counts during the first 90 days of the epidemic. Parameter calibration is achieved through the formulation of a general Bayesian hierarchical model to provide uncertainty quantification of resulting estimates. The open-source probabilistic programming language Stan is used for the requisite computation. Through sensitivity analysis and out-of-sample forecasting, we find our simple and interpretable model provides evidence that reductions in human mobility altered case dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا