Do you want to publish a course? Click here

Brightness modulations of our nearest terrestrial planet Venus reveal atmospheric super-rotation rather than surface features

120   0   0.0 ( 0 )
 Added by Yeon Joo Lee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Terrestrial exoplanets orbiting within or near their host stars habitable zone are potentially apt for life. It has been proposed that time-series measurements of reflected starlight from such planets will reveal their rotational period, main surface features and some atmospheric information. From imagery obtained with the Akatsuki spacecraft, here we show that Venus brightness at 283, 365, and 2020 nm is modulated by one or both of two periods of 3.7 and 4.6 days, and typical amplitudes <10% but occasional events of 20-40%. The modulations are unrelated to the solid-body rotation; they are caused by planetary-scale waves superimposed on the super-rotating winds. Here we propose that two modulation periods whose ratio of large-to-small values is not an integer number imply the existence of an atmosphere if detected at an exoplanet, but it remains ambiguous whether the atmosphere is optically thin or thick, as for Earth or Venus respectively. Multi-wavelength and long temporal baseline observations may be required to decide between these scenarios. Ultimately, Venus represents a false positive for interpretations of brightness modulations of terrestrial exoplanets in terms of surface features.



rate research

Read More

The competition between the torques induced by solid and thermal tides drives the rotational dynamics of Venus-like planets and super-Earths orbiting in the habitable zone of low-mass stars. The tidal responses of the atmosphere and telluric core are related to their respective physical properties and strongly depend on the tidal frequency. The resulting torque determines the possible equilibrium states of the planets spin. We compute here an analytic expression for the total tidal torque exerted on a Venus-like planet. This expression is used to characterize the equilibrium rotation of the body. Close to the star, the solid tide dominates. Far from it, the thermal tide drives the rotational dynamics of the planet. The transition regime corresponds to the habitable zone, where prograde and retrograde equilibrium states appear. We demonstrate the strong impact of the atmospheric properties and of the rheology of the solid part on the rotational dynamics of Venus-like planets, highlighting the key role played by dissipative mechanisms in the stability of equilibrium configurations.
The advent of a new generation of radial velocity instruments has allowed us to break the one Earth-mass barrier. We report a new milestone in this context with the detection of the lowest-mass planet measured so far using radial velocities: L 98-59 b, a rocky planet with half the mass of Venus. It is part of a system composed of three known transiting terrestrial planets (planets b to d). We announce the discovery of a fourth nontransiting planet with a minimum mass of 3.06_{-0.37}^{+0.33} MEarth and an orbital period of 12.796_{-0.019}^{+0.020} days and report indications for the presence of a fifth nontransiting terrestrial planet. With a minimum mass of 2.46_{-0.82}^{+0.66} MEarth and an orbital period 23.15_{-0.17}^{+0.60} days, this planet, if confirmed, would sit in the middle of the habitable zone of the L 98-59 system. L 98-59 is a bright M dwarf located 10.6 pc away. Positioned at the border of the continuous viewing zone of the James Webb Space Telescope, this system is destined to become a corner stone for comparative exoplanetology of terrestrial planets. The three transiting planets have transmission spectrum metrics ranging from 49 to 255, which makes them prime targets for an atmospheric characterization with the James Webb Space Telescope, the Hubble Space Telescope, Ariel, or ground-based facilities such as NIRPS or ESPRESSO. With an equilibrium temperature ranging from 416 to 627 K, they offer a unique opportunity to study the diversity of warm terrestrial planets. L 98-59 b and c have densities of 3.6_{-1.5}^{+1.4} and 4.57_{-0.85}^{+0.77} g.cm^{-3}, respectively, and have very similar bulk compositions with a small iron core that represents only 12 to 14 % of the total mass, and a small amount of water. However, with a density of 2.95_{-0.51}^{+0.79} g.cm^{-3} and despite a similar core mass fraction, up to 30 % of the mass of L 98-59 d might be water.
Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological activity, assess their ability to provide conditions for life as we know it, and investigate their expected atmospheric diversity. None of the currently adopted projects or missions, from ground or in space, can address these goals. In this White Paper we argue that a large space-based mission designed to detect and investigate thermal emission spectra of terrestrial exoplanets in the MIR wavelength range provides unique scientific potential to address these goals and surpasses the capabilities of other approaches. While NASA might be focusing on large missions that aim to detect terrestrial planets in reflected light, ESA has the opportunity to take leadership and spearhead the development of a large MIR exoplanet mission within the scope of the Voyage 2050 long-term plan establishing Europe at the forefront of exoplanet science for decades to come. Given the ambitious science goals of such a mission, additional international partners might be interested in participating and contributing to a roadmap that, in the long run, leads to a successful implementation. A new, dedicated development program funded by ESA to help reduce development and implementation cost and further push some of the required key technologies would be a first important step in this direction. Ultimately, a large MIR exoplanet imaging mission will be needed to help answer one of mankinds most fundamental questions: How unique is our Earth?
We present a retrieval method based on Bayesian analysis to infer the atmospheric compositions and surface or cloud-top pressures from transmission spectra of exoplanets with general compositions. In this study, we identify what can unambiguously be determined about the atmospheres of exoplanets from their transmission spectra by applying the retrieval method to synthetic observations of the super-Earth GJ 1214b. Our approach to infer constraints on atmospheric parameters is to compute their joint and marginal posterior probability distributions using the MCMC technique in a parallel tempering scheme. A new atmospheric parameterization is introduced that is applicable to general atmospheres in which the main constituent is not known a priori and clouds may be present. Our main finding is that a unique constraint of the mixing ratios of the absorbers and up to two spectrally inactive gases (such as N2 and primordial H2+He) is possible if the observations are sufficient to quantify both (1) the broadband transit depths in at least one absorption feature for each absorber and (2) the slope and strength of the molecular Rayleigh scattering signature. The surface or cloud-top pressure can be quantified if a surface or cloud deck is present. The mean molecular mass can be constrained from the Rayleigh slope or the shapes of absorption features, thus enabling to distinguish between cloudy hydrogen-rich atmospheres and high mean molecular mass atmospheres. We conclude, however, that without the signature of Rayleigh scattering--even with robustly detected infrared absorption features--there is no reliable way to tell if the absorber is the main constituent of the atmosphere or just a minor species with a mixing ratio of <0.1%. The retrieval method leads us to a conceptual picture of which details in transmission spectra are essential for unique characterizations of well-mixed atmospheres.
Faint undetected sources of radio-frequency interference (RFI) might become visible in long radio observations when they are consistently present over time. Thereby, they might obstruct the detection of the weak astronomical signals of interest. This issue is especially important for Epoch of Reionisation (EoR) projects that try to detect the faint redshifted HI signals from the time of the earliest structures in the Universe. We explore the RFI situation at 30-163 MHz by studying brightness histograms of visibility data observed with LOFAR, similar to radio-source-count analyses that are used in cosmology. An empirical RFI distribution model is derived that allows the simulation of RFI in radio observations. The brightness histograms show an RFI distribution that follows a power-law distribution with an estimated exponent around -1.5. With several assumptions, this can be explained with a uniform distribution of terrestrial radio sources whose radiation follows existing propagation models. Extrapolation of the power law implies that the current LOFAR EoR observations should be severely RFI limited if the strength of RFI sources remains strong after time integration. This is in contrast with actual observations, which almost reach the thermal noise and are thought not to be limited by RFI. Therefore, we conclude that it is unlikely that there are undetected RFI sources that will become visible in long observations. Consequently, there is no indication that RFI will prevent an EoR detection with LOFAR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا