Do you want to publish a course? Click here

Transitioning Universe with hybrid scalar field in Bianchi I space-time

103   0   0.0 ( 0 )
 Added by Anil Yadav dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we investigate a Bianchi type I transitioning Universe in Brans-Dicke theory. To get an explicit solution of the field equations, we assume scalar field as $phi = phi_{0}left[t^{alpha}exp(beta t)right]^{delta}$ with $phi_{0}$, $alpha$, $beta$ and $delta$ as constants. The values of $alpha$ and $beta$ are obtained by probing the proposed model with recent observational Hubble data (OHD) points. The interacting and non-interacting scenarios between dark matter and dark energy of the derived Universe within the framework of Brans-Dicke gravity are investigated. The $om(z)$ analysis of the Universe in derived model shows that the Universe is filled with dynamical dark energy with its equation of state parameter $omega_{de} > -1$. Hence the Universe behaves like a quintessence model at present epoch. Some physical properties of the Universe are also discussed.

rate research

Read More

Some cosmological solutions of massive strings are obtained in Bianchi I space-time following the techniques used by Letelier and Stachel. A class of solutions corresponds to string cosmology associated with/without a magnetic field and the other class consists of pure massive strings, obeying the Takabayashi equation of state.
In this paper, we have investigated a bulk viscous anisotropic Universe and constrained its model parameters with recent $H(z)$ and Pantheon compilation data. Using cosmic chronometric technique, we estimate the present value of Hubbles constant as $H_{0} = 69.39 pm 1.54~km~s^{-1}Mpc^{-1}$, $70.016 pm 1.65~km~s^{-1}Mpc^{-1}$ and $69.36 pm 1.42~km~s^{-1}Mpc^{-1}$ by bounding our derived model with recent $H(z)$ data, Pantheon and joint $H(z)$ and Pantheon data respectively. The present age of the Universe is specified as $t_0= 0.9796H_0^{-1}sim 13.79$ Gyrs. The model favours a transitioning Universe with the transition red-shift as $z_{t} = 0.73$. We have reconstructed the jerk parameter using the observational data sets. From the analysis of the jerk parameter, it is observed that, our derived model shows a marginal departure from the concordance $Lambda$CDM model.
Using the ADM formalism in the minisuperspace, we obtain the commutative and noncommutative exact classical solutions and exact wave function to the Wheeler-DeWitt equation with an arbitrary factor ordering, for the anisotropic Bianchi type I cosmological model, coupled to a scalar field, cosmological term and barotropic perfect fluid. We introduce noncommutative scale factors, considering that all minisuperspace variables $rm q^i$ do not commute, so the symplectic structure was modified. In the classical regime, it is shown that the anisotropic parameter $rm beta_{pm nc}$ and the field $phi$, for some value in the $lambda_{eff}$ cosmological term and noncommutative $theta$ parameter, present a dynamical isotropization up to a critical cosmic time $t_{c}$; after this time, the effects of isotropization in the noncommutative minisuperspace seems to disappear. In the quantum regimen, the probability density presents a new structure that corresponds to the value of the noncommutativity parameter.
We examine the dynamical consequences of homogeneous cosmological magnetic fields in the framework of loop quantum cosmology. We show that a big-bounce occurs in a collapsing magnetized Bianchi I universe, thus extending the known cases of singularity-avoidance. Previous work has shown that perfect fluid Bianchi I universes in loop quantum cosmology avoid the singularity via a bounce. The fluid has zero anisotropic stress, and the shear anisotropy in this case is conserved through the bounce. By contrast, the magnetic field has nonzero anisotropic stress, and shear anisotropy is not conserved through the bounce. After the bounce, the universe enters a classical phase. The addition of a dust fluid does not change these results qualitatively.
In this paper, we study a Bianchi type -I model of universe filled with barotropic and dark energy(DE) type fluids. The present values of cosmological parameters such as Hubble constant $H_0$, barotropic, DE and anisotropy energy parameters $(Omega_{m})_0$, $(Omega_{de})_0$ and $(Omega_{sigma})_0 $ and Equation of State(EoS) parameter for DE ($omega_{de}$) are statistically estimated in two ways by taking 38 point data set of Hubble parameter H(z) and 581 point data set of distance modulus of supernovae in the range $0leq z leq 1.414$. It is found that the results agree with the Planck result [P.A.R. Ade, et al., Astron. Astrophys. 594 A14 (2016)] and more latest result obtained by Amirhashchi and Amirhashchi [H. Amirhashchi and S. Amirhashchi, arXiv:1811.05400v4 (2019)]. Various physical properties such as age of the universe, deceleration parameter etc have also been investigated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا