Do you want to publish a course? Click here

Constraints on Lightly Ionizing Particles from CDMSlite

90   0   0.0 ( 0 )
 Added by Samir Banik
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) achieved efficient detection of very small recoil energies in its germanium target, resulting in sensitivity to Lightly Ionizing Particles (LIPs) in a previously unexplored region of charge, mass, and velocity parameter space. We report first direct-detection limits calculated using the optimum interval method on the vertical intensity of cosmogenically-produced LIPs with an electric charge smaller than $e/(3times10^5$), as well as the strongest limits for charge $leq e/160$, with a minimum vertical intensity of $1.36times10^{-7}$,cm$^{-2}$s$^{-1}$sr$^{-1}$ at charge $e/160$. These results apply over a wide range of LIP masses (5,MeV/$c^2$ to 100,TeV/$c^2$) and cover a wide range of $betagamma$ values (0.1 -- $10^6$), thus excluding non-relativistic LIPs with $betagamma$ as small as 0.1 for the first time.



rate research

Read More

While the Standard Model of particle physics does not include free particles with fractional charge, experimental searches have not ruled out their existence. We report results from the Cryogenic Dark Matter Search (CDMS II) experiment that give the first direct-detection limits for cosmogenically-produced relativistic particles with electric charge lower than $e$/6. A search for tracks in the six stacked detectors of each of two of the CDMS II towers found no candidates, thereby excluding new parameter space for particles with electric charges between $e$/6 and $e$/200.
The textsc{Majorana Demonstrator} is an ultra low-background experiment searching for neutrinoless double-beta decay in $^{76}$Ge. The heavily shielded array of germanium detectors, placed nearly a mile underground at the Sanford Underground Research Facility in Lead, South Dakota, also allows searches for new exotic physics. Free, relativistic, lightly-ionizing particles with electrical charges less than $e$ are forbidden by the standard model but predicted by some of its extensions. If such particles exist, they might be detected in the textsc{Majorana Demonstrator} by searching for multiple- detector events with individual-detector energy depositions down to 1 keV. This search is background free and no candidate events have been found in 285 days of data taking. New direct-detection limits are set for the flux of lightly ionizing particles for charges as low as $e$/1000.
We study the production of exotic millicharged particles (MCPs) from cosmic ray-atmosphere collisions which constitutes a permanent MCP production source for all terrestrial experiments Our calculation of the MCP flux can be used to reinterpret existing limits from experiments such as MACRO and Majorana on an ambient flux of ionizing particles. Large-scale underground neutrino detectors are particularly favorable targets for the resulting MCPs. Using available data from the Super-K experiment, we set new limits on MCPs, which are the best in sensitivity reach for the mass range $0.1 lesssim m_{chi} lesssim 0.5$ GeV, and which are competitive with accelerator-based searches for masses up to 1.5 GeV. Applying these constraints to models where a sub-dominant component of dark matter (DM) is fractionally charged allows us to probe parts of the parameter space that are challenging for conventional direct-detection DM experiments, independently of any assumptions about the DM abundance. These results can be further improved with the next generation of large-scale neutrino detectors.
We study different phenomenological signatures associated with new spin-2 particles. These new degrees of freedom, that we call hidden gravitons, arise in different high-energy theories such as extra-dimensional models or extensions of General Relativity. At low energies, hidden gravitons can be generally described by the Fierz-Pauli Lagrangian. Their phenomenology is parameterized by two dimensionful constants: their mass and their coupling strength. In this work, we analyze two different sets of constraints. On the one hand, we study potential deviations from the inverse-square law on solar-system and laboratory scales. To extend the constraints to scales where the laboratory probes are not competitive, we also study consequences on astrophysical objects. We analyze in detail the processes that may take place in stellar interiors and lead to emission of hidden gravitons, acting like an additional source of energy loss.
The extended excess toward the Galactic Center (GC) in gamma rays inferred from Fermi-LAT observations has been interpreted as being due to dark matter (DM) annihilation. Here, we perform new likelihood analyses of the GC and show that, when including templates for the stellar galactic and nuclear bulges, the GC shows no significant detection of a DM annihilation template, even after generous variations in the Galactic diffuse emission models and a wide range of DM halo profiles. We include Galactic diffuse emission models with combinations of three-dimensional inverse Compton maps, variations of interstellar gas maps, and a central source of electrons. For the DM profile, we include both spherical and ellipsoidal DM morphologies and a range of radial profiles from steep cusps to kiloparsec-sized cores, motivated in part by hydrodynamical simulations. Our derived upper limits on the dark matter annihilation flux place strong constraints on DM properties. In the case of the pure $b$-quark annihilation channel, our limits on the annihilation cross section are more stringent than those from the Milky Way dwarfs up to DM masses of approximately TeV and rule out the thermal relic cross section up to approximately 300 GeV. Better understanding of the DM profile, as well as the Fermi-LAT data at its highest energies, would further improve the sensitivity to DM properties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا