Do you want to publish a course? Click here

A New Transient Ultraluminous X-ray Source in NGC 7090

87   0   0.0 ( 0 )
 Added by Dominic Walton
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of a new, transient ultraluminous X-ray source (ULX) in the galaxy NGC 7090. This new ULX, which we refer to as NGC 7090 ULX3, was discovered via monitoring with $Swift$ during 2019-20, and to date has exhibited a peak luminosity of $L_{rm{X}} sim 6 times 10^{39}$ erg s$^{-1}$. Archival searches show that, prior to its recent transition into the ULX regime, ULX3 appeared to exhibit a fairly stable luminosity of $L_{rm{X}} sim 10^{38}$ erg s$^{-1}$. Such strong long-timescale variability may be reminiscent of the small population of known ULX pulsars, although deep follow-up observations with $XMM$-$Newton$ and $NuSTAR$ do not reveal any robust X-ray pulsation signals. Pulsations similar to those seen from known ULX pulsars cannot be completely excluded, however, as the limit on the pulsed fraction of any signal that remains undetected in these data is $lesssim$20%. The broadband spectrum from these observations is well modelled with a simple thin disc model, consistent with sub-Eddington accretion, which may instead imply a moderately large black hole accretor ($M_{rm{BH}} sim 40 ~ M_{odot}$). Similarly, though, more complex models consistent with the super-Eddington spectra seen in other ULXs (and the known ULX pulsars) cannot be excluded given the limited signal-to-noise of the available broadband data. The nature of the accretor powering this new ULX therefore remains uncertain.



rate research

Read More

We report on the serendipitous discovery of a new transient in NGC 5907, at a peak luminosity of 6.4x10^{39} erg/s. The source was undetected in previous 2012 Chandra observations with a 3 sigma upper limit on the luminosity of 1.5x10^{38} erg/s, implying a flux increase of a factor of >35. We analyzed three recent 60ks/50ks Chandra and 50ks XMM-Newton observations, as well as all the available Swift observations performed between August 2017/March 2018. Until the first half of October 2017, Swift observations do not show any emission from the source. The transient entered the ULX regime in less than two weeks and its outburst was still on-going at the end of February 2018. The 0.3-10 keV spectrum is consistent with a single multicolour blackbody disc (kT~1.5 keV). The source might be a ~30 solar mass black hole accreting at the Eddington limit. However, although we did not find evidence of pulsations, we cannot rule-out the possibility that this ULX hosts an accreting neutron star.
66 - Zhu Liu 2019
We report the X-ray data analysis of two transient ultraluminous X-ray sources (ULXs, hereafter X1 and X2) located in the nearby galaxy NGC 7090. While they were not detected in the 2004 XMM-Newton and 2005 Chandra observations, their 0.3-10 keV X-ray luminosities reached $>3times10^{39},mathrm{erg,s^{-1}}$ in later XMM-Newton or Swift observations, showing increases in flux by a factor of $>80$ and $>300$ for X1 and X2, respectively. X1 showed indications of spectral variability: at the highest luminosity, its X-ray spectra can be fitted with a powerlaw ($Gamma=1.55pm0.15$), or a multicolour disc model with $T_{mathrm{in}}=2.07^{+0.30}_{-0.23}$ keV; the X-ray spectrum became softer ($Gamma=2.67^{+0.69}_{-0.64}$), or cooler ($T_mathrm{in}=0.64^{+0.28}_{-0.17}$ keV) at lower luminosity. No strong evidence for spectral variability was found for X2. Its X-ray spectra can be fitted with a simple powerlaw model ($Gamma=1.61^{+0.55}_{-0.50}$), or a multicolour disc model ($1.69^{+1.17}_{-0.48}$ keV). A possible optical counterpart for X1 is revealed in HST imaging. No optical variability is found, indicating that the optical radiation may be dominated by the companion star. Future X-ray and optical observations are necessary to determine the true nature of the compact object.
341 - Andrew D. Sutton 2013
We present a multi-mission X-ray analysis of a bright (peak observed 0.3-10 keV luminosity of ~ 6x10^{40} erg s^{-1}), but relatively highly absorbed ULX in the edge-on spiral galaxy NGC 5907. The ULX is spectrally hard in X-rays (Gamma ~ 1.2-1.7, when fitted with an absorbed power-law), and has a previously-reported hard spectral break consistent with it being in the ultraluminous accretion state. It is also relatively highly absorbed for a ULX, with a column of ~ 0.4-0.9x10^{22} atom cm^{-2} in addition to the line-of-sight column in our Galaxy. Although its X-ray spectra are well represented by accretion disc models, its variability characteristics argue against this interpretation. The ULX spectra instead appear dominated by a cool, optically-thick Comptonising corona. We discuss how the measured 9 per cent rms variability and a hardening of the spectrum as its flux diminishes might be reconciled with the effects of a very massive, radiatively-driven wind, and subtle changes in the corona respectively. We speculate that the cool disc-like spectral component thought to be produced by the wind in other ULXs may be missing from the observed spectrum due to a combination of a low temperature (~ 0.1 keV), and the high column to the ULX. We find no evidence, other than its extreme X-ray luminosity, for the presence of an intermediate mass black hole (~ 10^2 - 10^4 Msun) in this object. Rather, the observations can be consistently explained by a massive (greater than ~ 20 Msun) stellar remnant black hole in a super-Eddington accretion state.
Some ultraluminous X-ray sources (ULXs) are surrounded by collisionally ionized bubbles, larger and more energetic than supernova remnants: they are evidence of the powerful outflows associated with super-Eddington X-ray sources. We illustrate the most recent addition to this class: a huge (350 pc x 220 pc in diameter) bubble around a ULX in NGC 5585. We modelled the X-ray properties of the ULX (a broadened-disc source with L_X ~ 2-4 x 10^{39} erg/s) from Chandra and XMM-Newton, and identified its likely optical counterpart in Hubble Space Telescope images. We used the Large Binocular Telescope to study the optical emission from the ionized bubble. We show that the line emission spectrum is indicative of collisional ionization. We refine the method for inferring the shock velocity from the width of the optical lines. We derive an average shock velocity ~125 km/s, which corresponds to a dynamical age of ~600,000 years for the bubble, and an average mechanical power P_w ~ 10^{40} erg/s; thus, the mechanical power is a few times higher than the current photon luminosity. With Very Large Array observations, we discovered and resolved a powerful radio bubble with the same size as the optical bubble, and a 1.4-GHz luminosity ~10^{35} erg/s, at the upper end of the luminosity range for this type of source. We explain why ULX bubbles tend to become more radio luminous as they expand while radio supernova remnants tend to fade.
168 - T.P. Roberts 2012
We report the discovery of a new ultraluminous X-ray source (ULX) associated with a globular cluster in the elliptical galaxy NGC 4649. The X-ray source was initially detected with a luminosity below 5 x 10^38 erg/s, but in subsequent observations 7 and 11 years later it had brightened substantially to 2 - 3 x 10^39 erg/s. Over the course of six separate observations it displayed significant spectral variability, in both continuum slope and absorption column. Short-term variability in the X-ray flux was also present in at least one observation. The properties of this object appear consistent with a stellar-mass black hole accreting at super-Eddington rates (i.e. in the ultraluminous accretion state), although a highly super-Eddington neutron star cannot be excluded. The coincidence of an increase in absorption column with a possible enhancement in short-term variability in at least one observation is suggestive of a clumpy radiatively-driven wind crossing our line-of-sight to the object
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا