Do you want to publish a course? Click here

A universal simulating framework for quantum key distribution systems

64   0   0.0 ( 0 )
 Added by Guan-Jie Fan-Yuan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum key distribution (QKD) provides a physical-based way to conciliate keys between remote users securely. Simulation is an essential method for designing and optimizing QKD systems. We develop a universal simulation framework based on quantum operator descriptions of photon signals and optical devices. The optical devices can be freely combined and driven by the photon excitation events, which make it appropriate for arbitrary QKD systems in principle. Our framework focuses on realistic characters of optical devices and system structures. The imperfections of the devices and the non-local properties of a quantum system are taken into account when modeling. We simulate the single-photon and Hong-Ou-Mandel (HOM) interference optical units, which are fundamental of QKD systems. The results using this event-driven framework agree well with the theoretical results, which indicate its feasibility for QKD.



rate research

Read More

The incorporation of multiplexing techniques used in Microwave Photonics to Quantum Key Distribution (QKD) systems bring important advantages enabling the simultaneous and parallel delivery of multiple keys between a central station and different end-users in the context of multipoint access and metropolitan networks, or by providing higher key distribution rates in point to point links by suitably linking the parallel distributed keys. It also allows the coexistence of classical information and quantum key distribution channels over a single optical fibre infrastructure. Here we show, for the first time to our knowledge, the successful operation of a two domain (subcarrier and wavelength division) multiplexed strong reference BB84 quantum key distribution system. A four independent channel QKD system featuring 10 kb/s/channel over an 11 km link with Quantum Bit Error Rate (QBER) < 2 % is reported. These results open the way for multi-quantum key distribution over optical fiber networks.
Quantum key distribution (QKD) uses individual light quanta in quantum superposition states to guarantee unconditional communication security between distant parties. In practice, the achievable distance for QKD has been limited to a few hundred kilometers, due to the channel loss of fibers or terrestrial free space that exponentially reduced the photon rate. Satellite-based QKD promises to establish a global-scale quantum network by exploiting the negligible photon loss and decoherence in the empty out space. Here, we develop and launch a low-Earth-orbit satellite to implement decoy-state QKD with over kHz key rate from the satellite to ground over a distance up to 1200 km, which is up to 20 orders of magnitudes more efficient than that expected using an optical fiber (with 0.2 dB/km loss) of the same length. The establishment of a reliable and efficient space-to-ground link for faithful quantum state transmission constitutes a key milestone for global-scale quantum networks.
Key establishment is a crucial primitive for building secure channels: in a multi-party setting, it allows two parties using only public authenticated communication to establish a secret session key which can be used to encrypt messages. But if the session key is compromised, the confidentiality of encrypted messages is typically compromised as well. Without quantum mechanics, key establishment can only be done under the assumption that some computational problem is hard. Since digital communication can be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating future algorithmic and computational discoveries which could break the secrecy of past keys, violating the secrecy of the confidential channel. Quantum key distribution (QKD) can be used generate secret keys that are secure against any future algorithmic or computational improvements. QKD protocols still require authentication of classical communication, however, which is most easily achieved using computationally secure digital signature schemes. It is generally considered folklore that QKD when used with computationally secure authentication is still secure against an unbounded adversary, provided the adversary did not break the authentication during the run of the protocol. We describe a security model for quantum key distribution based on traditional classical authenticated key exchange (AKE) security models. Using our model, we characterize the long-term security of the BB84 QKD protocol with computationally secure authentication against an eventually unbounded adversary. By basing our model on traditional AKE models, we can more readily compare the relative merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in which types of adversarial environments different quantum and classical key agreement protocols can be secure.
Quantum key distribution (QKD) promises security stemming from the laws of quantum physics. QKD devices based on integrated chips not only provides miniaturization, but also enhanced performance, which is important to practical and scalable networks. Here we report the realization of a relay server for measurement-device-independent QKD based on a heterogeneous superconducting-silicon-photonic chip. Silicon waveguides and beam splitters are used for optical guidance and interference. Waveguide integrated superconducting nanowire single-photon detectors are used to detector single photons. We show Hong-Ou-Mandel interference between weak coherent states with a visibility of 48%(2%). Our system generates 733 sifted bits at about 71 dB attenuation (equivalent to 358 km standard fiber) with a quantum bit error rate of 3.5%(0.7%). The fabrication processes of our device are compatible with standard thin-film technology. Together with integrated QKD transmitters, a scalable, chip-based and cost-effective QKD network can be realized in the near future.
We present a silicon optical transmitter for polarization-encoded quantum key distribution (QKD). The chip was fabricated in a standard silicon photonic foundry process and integrated a pulse generator, intensity modulator, variable optical attenuator, and polarization modulator in a 1.3 mm $times$ 3 mm die area. The devices in the photonic circuit meet the requirements for QKD. The transmitter was used in a proof-of-concept demonstration of the BB84 QKD protocol over a 5 km long fiber link.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا