No Arabic abstract
Less common ligand coordination of transition-metal centers is often associated with peculiar valence-shell electron configurations and outstanding physical properties. One example is the Fe$^+$ ion with linear coordination, actively investigated in the research area of single-molecule magnetism. Here we address the nature of 3$d^9$ states for Cu$^{2+}$ ions sitting in the center of trigonal bipyramidal ligand cages in the quasi-two-dimensional honeycomb compound InCu$_{2/3}$V$_{1/3}$O$_3$, whose unusual magnetic properties were intensively studied in the recent past. In particular, we discuss the interplay of structural effects, electron correlations, and spin-orbit couplings in this material. A relevant computational finding is a different sequence of the Cu ($xz$, $yz$) and ($xy$, $x^2!-!y^2$) levels as compared to existing electronic-structure models, which has implications for the interpretation of various excitation spectra. Spin-orbit interactions, both first- and second-order, turn out to be stronger than previously assumed, suggesting that rather rich single-ion magnetic properties can be in principle achieved also for the 3$d^9$ configuration by properly adjusting the sequence of crystal-field states for such less usual ligand coordination.
We report a combined $^{115}$In NQR, $^{51}$V NMR and $mu$SR spectroscopic study of the low-temperature magnetic properties of InCu$_{2/3}$V$_{1/3}$O$_3$, a quasi-two dimensional (2D) compound comprising in the spin sector a honeycomb lattice of antiferromagnetically coupled spins $S=1/2$ associated with Cu$^{2+}$ ions. Despite substantial experimental and theoretical efforts, the ground state of this material was has not been ultimately identified. In particular, two characteristic temperatures of about $sim 40$ K and $sim 20$ K manifesting themselves as anomalies in different magnetic measurements are discussed controversially. A combined analysis of the experimental data complemented with theoretical calculations of exchange constants enabled us to identify below 39 K an ``intermediate quasi-2D static spin state. This spin state is characterized by a staggered magnetization with a temperature evolution that agrees with the predictions for the 2D XY model. We observe that this state gradually transforms at 15 K into a fully developed 3D antiferromagnetic Neel state. We ascribe such an extended quasi-2D static regime to an effective magnetic decoupling of the honeycomb planes due to a strong frustration of the interlayer exchange interactions which inhibits long-range spin-spin correlations across the planes. Interestingly, we find indications of the topological Berezinsky-Kosterlitz-Thouless transition in the quasi-2D static state of the honeycomb spin-1/2 planes of InCu$_{2/3}$V$_{1/3}$O$_3$.
High field electron spin resonance, nuclear magnetic resonance and magnetization studies addressing the ground state of the quasi two-dimensional spin-1/2 honeycomb lattice compound InCu{2/3}V{1/3}O{3} are reported. Uncorrelated finite size structural domains occurring in the honeycomb planes are expected to inhibit long range magnetic order. Surprisingly, ESR data reveal the development of two collinear antiferromagnetic (AFM) sublattices below ~ 20 K whereas NMR results show the presence of the staggered internal field. Magnetization data evidence a spin reorientation transition at ~ 5.7 T. Quantum Monte-Carlo calculations show that switching on the coupling between the honeycomb spin planes in a finite size cluster yields a Neel-like AFM spin structure with a substantial staggered magnetization at finite temperatures. This may explain the occurrence of a robust AFM state in InCu{2/3}V{1/3}O{3} despite an unfavorable effect of structural disorder.
With x-ray absorption spectroscopy we investigated the orbital reconstruction and the induced ferromagnetic moment of the interfacial Cu atoms in YBa$_2$Cu$_3$O$_{7}$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (YBCO/LCMO) and La$_{2-x}$Sr$_{x}$CuO$_4$/La$_{2/3}$Ca$_{1/3}$MnO$_3$ (LSCO/LCMO) multilayers. We demonstrate that these electronic and magnetic proximity effects are coupled and are common to these cuprate/manganite multilayers. Moreover, we show that they are closely linked to a specific interface termination with a direct Cu-O-Mn bond. We furthermore show that the intrinsic hole doping of the cuprate layers and the local strain due to the lattice mismatch between the cuprate and manganite layers are not of primary importance. These findings underline the central role of the covalent bonding at the cuprate/manganite interface in defining the spin-electronic properties.
We study electronic and magnetic properties of the quasi-one-dimensional spin-1/2 magnet Ba3Cu3Sc4O12 with a distinct orthogonal connectivity of CuO4 plaquettes. An effective low-energy model taking into account spin-orbit coupling was constructed by means of first-principles calculations. On this basis a complete microscopic magnetic model of Ba3Cu3Sc4O12, including symmetric and antisymmetric anisotropic exchange interactions, is derived. The anisotropic exchanges are obtained from a distinct first-principles numerical scheme combining, on one hand, the local density approximation taking into account spin-orbit coupling, and, on the other hand, projection procedure along with the microscopic theory by Toru Moriya. The resulting tensors of the symmetric anisotropy favor collinear magnetic order along the structural chains with the leading ferromagnetic coupling J1 = -9.88 meV. The interchain interactions J8 = 0.21 meV and J5 = 0.093 meV are antiferromagnetic. Quantum Monte Carlo simulations demonstrated that the proposed model reproduces the experimental Neel temperature, magnetization and magnetic susceptibility data. The modeling of neutron diffraction data reveals an important role of the covalent Cu-O bonding in Ba3Cu3Sc4O12.
Chiral magnets with topologically nontrivial spin order such as Skyrmions have generated enormous interest in both fundamental and applied sciences. We report broadband microwave spectroscopy performed on the insulating chiral ferrimagnet Cu$_{2}$OSeO$_{3}$. For the damping of magnetization dynamics we find a remarkably small Gilbert damping parameter of about $1times10^{-4}$ at 5 K. This value is only a factor of 4 larger than the one reported for the best insulating ferrimagnet yttrium iron garnet. We detect a series of sharp resonances and attribute them to confined spin waves in the mm-sized samples. Considering the small damping, insulating chiral magnets turn out to be promising candidates when exploring non-collinear spin structures for high frequency applications.