Do you want to publish a course? Click here

On the role of anaxonic local neurons in the crossover to continuously varying exponents for avalanche activity

157   0   0.0 ( 0 )
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Local anaxonic neurons with graded potential release are important ingredients of nervous systems, present in the olfactory bulb system of mammalians, in the human visual system, as well as in arthropods and nematodes. We develop a neuronal network model including both axonic and anaxonic neurons and monitor the activity tuned by the following parameters: The decay length of the graded potential in local neurons, the fraction of local neurons, the largest eigenvalue of the adjacency matrix and the range of connections of the local neurons. Tuning the fraction of local neurons, we derive the phase diagram including two transition lines: A critical line separating subcritical and supercritical regions, characterized by power law distributions of avalanche sizes and durations, and a bifurcation line. We find that the overall behavior of the system is controlled by a parameter tuning the relevance of local neuron transmission with respect to the axonal one. The statistical properties of spontaneous activity are affected by local neurons at large fractions and in the condition that the graded potential transmission dominates the axonal one. In this case the scaling properties of spontaneous activity exhibit continuously varying exponents, rather than the mean field branching model universality class.



rate research

Read More

419 - Hideaki Shimazaki 2013
Neurons in cortical circuits exhibit coordinated spiking activity, and can produce correlated synchronous spikes during behavior and cognition. We recently developed a method for estimating the dynamics of correlated ensemble activity by combining a model of simultaneous neuronal interactions (e.g., a spin-glass model) with a state-space method (Shimazaki et al. 2012 PLoS Comput Biol 8 e1002385). This method allows us to estimate stimulus-evoked dynamics of neuronal interactions which is reproducible in repeated trials under identical experimental conditions. However, the method may not be suitable for detecting stimulus responses if the neuronal dynamics exhibits significant variability across trials. In addition, the previous model does not include effects of past spiking activity of the neurons on the current state of ensemble activity. In this study, we develop a parametric method for simultaneously estimating the stimulus and spike-history effects on the ensemble activity from single-trial data even if the neurons exhibit dynamics that is largely unrelated to these effects. For this goal, we model ensemble neuronal activity as a latent process and include the stimulus and spike-history effects as exogenous inputs to the latent process. We develop an expectation-maximization algorithm that simultaneously achieves estimation of the latent process, stimulus responses, and spike-history effects. The proposed method is useful to analyze an interaction of internal cortical states and sensory evoked activity.
Experimental and numerical results suggest that the brain can be viewed as a system acting close to a critical point, as confirmed by scale-free distributions of relevant quantities in a variety of different systems and models. Less attention has received the investigation of the temporal correlation functions in brain activity in different, healthy and pathological, conditions. Here we perform this analysis by means of a model with short and long-term plasticity which implements the novel feature of different recovery rates for excitatory and inhibitory neurons, found experimentally. We evidence the important role played by inhibitory neurons in the supercritical state: We detect an unexpected oscillatory behaviour of the correlation decay, whose frequency depends on the fraction of inhibitory neurons and their connectivity degree. This behaviour can be rationalized by the observation that bursts in activity become more frequent and with a smaller amplitude as inhibition becomes more relevant.
Relaxation in glasses is often approximated by a stretched-exponential form: $f(t) = A exp [-(t/tau)^{beta}]$. Here, we show that the relaxation in a model of sheared non-Brownian suspensions developed by Corte et al. [Nature Phys. 4, 420 (2008)] can be well approximated by a stretched exponential with an exponent $beta$ that depends on the strain amplitude: $0.25 < beta < 1$. In a one-dimensional version of the model, we show how the relaxation originates from density fluctuations in the initial particle configurations. Our analysis is in good agreement with numerical simulations and reveals a functional form for the relaxation that is distinct from, but well approximated by, a stretched-exponential function.
Maximum entropy models are the least structured probability distributions that exactly reproduce a chosen set of statistics measured in an interacting network. Here we use this principle to construct probabilistic models which describe the correlated spiking activity of populations of up to 120 neurons in the salamander retina as it responds to natural movies. Already in groups as small as 10 neurons, interactions between spikes can no longer be regarded as small perturbations in an otherwise independent system; for 40 or more neurons pairwise interactions need to be supplemented by a global interaction that controls the distribution of synchrony in the population. Here we show that such K-pairwise models--being systematic extensions of the previously used pairwise Ising models--provide an excellent account of the data. We explore the properties of the neural vocabulary by: 1) estimating its entropy, which constrains the populations capacity to represent visual information; 2) classifying activity patterns into a small set of metastable collective modes; 3) showing that the neural codeword ensembles are extremely inhomogenous; 4) demonstrating that the state of individual neurons is highly predictable from the rest of the population, allowing the capacity for error correction.
182 - N. Khan , P. Sarkar , A. Midya 2016
Renormalization group theory does not restrict the from of continuous variation of critical exponents which occurs in presence of a marginal operator. However, the continuous variation of critical exponents, observed in different contexts, usually follows a weak universality scenario where some of the exponents (e.g., $beta, gamma, u$) vary keeping others (e.g., $delta , eta$) fixed. Here we report a ferromagnetic phase transition in (Sm$_{1-y}$Nd$_{y}$)$_{0.52}$Sr$_{0.48}$MnO$_3$ $(0.5le yle1)$ single crystal where all critical exponents vary with $y.$ Such variation clearly violates both universality and weak universality hypothesis. We propose a new scaling theory that explains the present experimental results, reduces to the weak universality as a special case, and provides a generic route leading to continuous variation of critical exponents and multicriticality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا