No Arabic abstract
Molecular D/H ratios are frequently used to probe the chemical past of Solar System volatiles. Yet it is unclear which parts of the Solar Nebula hosted an active deuterium fractionation chemistry. To address this question, we present 0.2-0.4 ALMA observations of DCO+ and DCN 2-1, 3-2 and 4-3 towards the nearby protoplanetary disk around TW Hya, taken as part of the TW Hya Rosetta Stone project, augmented with archival data. DCO+ is characterized by an excitation temperature of ~40 K across the 70 au radius pebble disk, indicative of emission from a warm, elevated molecular layer. Tentatively, DCN is present at even higher temperatures. Both DCO+ and DCN present substantial emission cavities in the inner disk, while in the outer disk the DCO+ and DCN morphologies diverge: most DCN emission originates from a narrow ring peaking around 30~au, with some additional diffuse DCN emission present at larger radii, while DCO+ is present in a broad structured ring that extends past the pebble disk. Based on parametric disk abundance models, these emission patterns can be explained by a near-constant DCN abundance exterior to the cavity, and an increasing DCO+ abundance with radius. There appears to be an active deuterium fractionation chemistry in multiple disk regions around TW Hya, but not in the cold planetesimal-forming midplane and in the inner disk. More observations are needed to explore whether deuterium fractionation is actually absent in these latter regions, and if its absence is a common feature, or something peculiar to the old TW Hya disk.
Connecting the composition of planet-forming disks with that of gas giant exoplanet atmospheres, in particular through C/O ratios, is one of the key goals of disk chemistry. Small hydrocarbons like $rm C_2H$ and $rm C_3H_2$ have been identified as tracers of C/O, as they form abundantly under high C/O conditions. We present resolved $rm C_3H_2$ observations from the TW Hya Rosetta Stone Project, a program designed to map the chemistry of common molecules at $15-20$ au resolution in the TW Hya disk. Augmented by archival data, these observations comprise the most extensive multi-line set for disks of both ortho and para spin isomers spanning a wide range of energies, $E_u=29-97$ K. We find the ortho-to-para ratio of $rm C_3H_2$ is consistent with 3 throughout extent of the emission, and the total abundance of both $rm C_3H_2$ isomers is $(7.5-10)times10^{-11}$ per H atom, or $1-10$% of the previously published $rm C_2H$ abundance in the same source. We find $rm C_3H_2$ comes from a layer near the surface that extends no deeper than $z/r=0.25$. Our observations are consistent with substantial radial variation in gas-phase C/O in TW Hya, with a sharp increase outside $sim30$ au. Even if we are not directly tracing the midplane, if planets accrete from the surface via, e.g., meridonial flows, then such a change should be imprinted on forming planets. Perhaps interestingly, the HR 8799 planetary system also shows an increasing gradient in its giant planets atmospheric C/O ratios. While these stars are quite different, hydrocarbon rings in disks are common, and therefore our results are consistent with the young planets of HR 8799 still bearing the imprint of their parent disks volatile chemistry.
The thermal structure of protoplanetary disks is a fundamental characteristic of the system that has wide reaching effects on disk evolution and planet formation. In this study, we constrain the 2D thermal structure of the protoplanetary disk TW Hya structure utilizing images of seven CO lines. This includes new ALMA observations of 12CO J=2-1 and C18O J=2-1 as well as archival ALMA observations of 12CO J=3-2, 13CO J=3-2, 6-5, C18O J= 3-2, 6-5. Additionally, we reproduce a Herschel observation of the HD J=1-0 line flux, the spectral energy distribution, and utilize a recent quantification of CO radial depletion in TW Hya. These observations were modeled using the thermochemical code RAC2D, and our best fit model reproduces all spatially resolved CO surface brightness profiles. The resulting thermal profile finds a disk mass of 0.025 Msun and a thin upper layer of gas depleted of small dust with a thickness of approx 1.2% of the corresponding radius. Using our final thermal structure, we find that CO alone is not a viable mass tracer as its abundance is degenerate with the total H2 surface density. Different mass models can readily match the spatially resolved CO line profiles with disparate abundance assumptions. Mass determination requires additional knowledge and, in this work, HD provides the additional constraint to derive the gas mass and supports the inference of CO depletion in the TW Hya disk. Our final thermal structure confirms the use of HD as a powerful probe of protoplanetary disk mass. Additionally, the method laid out in this paper is an employable strategy for extraction of disk temperatures and masses in the future.
Formaldehyde (H$_2$CO) is an important precursor to organics like methanol (CH$_3$OH). It is important to understand the conditions that produce H$_2$CO and prebiotic molecules during star and planet formation. H$_2$CO possesses both gas-phase and solid-state formation pathways, involving either UV-produced radical precursors or CO ice and cold ($lesssim 20$ K) dust grains. To understand which pathway dominates, gaseous H$_2$COs ortho-to-para ratio (OPR) has been used as a probe, with a value of 3 indicating warm conditions and $<3$ linked to cold formation in the solid-state. We present spatially resolved ALMA observations of multiple ortho- and para-H$_2$CO transitions in the TW Hya protoplanetary disk to test H$_2$CO formation theories during planet formation. We find disk-averaged rotational temperatures and column densities of $33pm2$ K, ($1.1pm0.1)times10^{12}$ cm$^{-2}$ and $25pm2$ K, $(4.4pm0.3)times10^{11}$ cm$^{-2}$ for ortho- and para-H$_2$CO, respectively, and an OPR of $2.49pm0.23$. A radially resolved analysis shows that the observed H$_2$CO emits mostly at rotational temperatures of 30-40 K, corresponding to a layer with $z/Rge0.25$. The OPR is consistent with 3 within 60 au, the extent of the pebble disk, and decreases beyond 60 au to $2.0pm0.5$. The latter corresponds to a spin temperature of 12 K, well below the rotational temperature. The combination of relatively uniform emitting conditions, a radial gradient in the OPR, and recent laboratory experiments and theory on OPR ratios after sublimation, lead us to speculate that gas-phase formation is responsible for the observed H$_2$CO across the TW Hya disk.
We present Atacama Large Millimeter Array (ALMA) observations of TW Hya at 3.1 mm with $sim50$ milliarcsecond resolution. These new data were combined with archival high angular resolution ALMA observations at 0.87 mm, 1.3 mm, and 2.1 mm. We analyze these multi-wavelength data to infer a disk radial profile of the dust surface density, maximum particle size, and slope of the particle size distribution. Most previously known annular substructures in the disk of TW Hya are resolved at the four wavelengths. Inside the inner 3 au cavity, the 2.1 mm and 3.1 mm images show a compact source of free-free emission, likely associated with an ionized jet. Our multi-wavelength analysis of the dust emission shows that the maximum particle size in the disk of TW Hya is $>1$ mm. The inner 20 au are completely optically thick at all four bands, which results in the data tracing different disk heights at different wavelengths. Coupled with the effects of dust settling, this prevents the derivation of accurate density and grain size estimates in these regions. At $r>20$ au, we find evidence of the accumulation of large dust particle at the position of the bright rings, indicating that these are working as dust traps. The total dust mass in the disk is between 250 and 330 $M_{oplus}$, which represents a gas-to-dust mass ratio between 50 and 70. Our mass measurement is a factor of 4.5-5.9 higher than the mass that one would estimate using the typical assumptions of large demographic surveys. Our results indicate that the ring substructures in TW Hya are ideal locations to trigger the streaming instability and form new generations of planetesimals.
Transiting exoplanets (TEPs) observed just about 10 Myrs after formation of their host systems may serve as the Rosetta Stone for planet formation theories. They would give strong constraints on several aspects of planet formation, e.g. time-scales (planet formation would then be possible within 10 Myrs), the radius of the planet could indicate whether planets form by gravitational collapse (being larger when young) or accretion growth (being smaller when young). We present a survey, the main goal of which is to find and then characterise TEPs in very young open clusters.