Efficient CNOT Synthesis for NISQ Devices


Abstract in English

In the era of noisy intermediate-scale quantum (NISQ), executing quantum algorithms on actual quantum devices faces unique challenges. One such challenge is that quantum devices in this era have restricted connectivity: quantum gates are allowed to act only on specific pairs of physical qubits. For this reason, a quantum circuit needs to go through a compiling process called qubit routing before it can be executed on a quantum computer. In this study, we propose a CNOT synthesis method called the token reduction method to solve this problem. The token reduction method works for all quantum computers whose architecture is represented by connected graphs. A major difference between our method and the existing ones is that our method synthesizes a circuit to an output qubit mapping that might be different from the input qubit mapping. The final mapping for the synthesis is determined dynamically during the synthesis process. Results showed that our algorithm consistently outperforms the best publicly accessible algorithm for all of the tested quantum architectures.

Download