Do you want to publish a course? Click here

Updated BBN constraints on electromagnetic decays of MeV-scale particles

274   0   0.0 ( 0 )
 Added by Paul Frederik Depta
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, we revise and update model-independent constraints from Big Bang Nucleosynthesis on MeV-scale particles $phi$ which decay into photons and/or electron-positron pairs. We use the latest determinations of primordial abundances and extend the analysis in arXiv:1808.09324 by including all spin-statistical factors as well as inverse decays, significantly strengthening the resulting bounds in particular for small masses. For a very suppressed initial abundance of $phi$, these effects become ever more important and we find that even a pure freeze-in abundance can be significantly constrained. In parallel to this article, we release the public code ACROPOLIS which numerically solves the reaction network necessary to evaluate the effect of photodisintegration on the final light element abundances. As an interesting application, we re-evaluate a possible solution of the lithium problem due to the photodisintegration of beryllium and find that e.g. an ALP produced via freeze-in can lead to a viable solution.



rate research

Read More

Meta-stable dark sector particles decaying into electrons or photons may non-trivially change the Hubble rate, lead to entropy injection into the thermal bath of Standard Model particles and may also photodisintegrate light nuclei formed in the early universe. We study generic constraints from Big Bang Nucleosynthesis on such a setup, with a particular emphasis on MeV-scale particles which are neither fully relativistic nor non-relativistic during all times relevant for Big Bang Nucleosynthesis. We apply our results to a simple model of self-interacting dark matter with a light scalar mediator. This setup turns out to be severely constrained by these considerations in combination with direct dark matter searches and will be fully tested with the next generation of low-threshold direct detection experiments.
Thermal dark matter at the MeV scale faces stringent bounds from a variety of cosmological probes. Here we perform a detailed evaluation of BBN bounds on the annihilation cross section of dark matter with a mass $1,text{MeV} lesssim m_chi lesssim 1,text{GeV}$. For $p-wave suppressed annihilations, constraints from BBN turn out to be significantly stronger than the ones from CMB observations, and are competitive with the strongest bounds from other indirect searches. We furthermore update the lower bound from BBN on the mass of thermal dark matter using improved determinations of primordial abundances. While being of similar strength as the corresponding bound from CMB, it is significantly more robust to changes in the particle physics model.
Very recently, the LUNA collaboration has reported a new measurement of the $d+pto {}^{3}text{He}+gamma$ reaction rate, which plays an important role in the prediction of the primordial deuterium abundance at the time of BBN. This new measurement has triggered a new set of global BBN analyses within the context of the Standard Model. In this addendum to JCAP 01 (2020) 004 (arXiv:1910.01649), we consider the implications of these new results for our constraints on MeV-scale dark sectors. Importantly, we find that our bounds in the BBN-only and Planck-only analyses are insensitive to these updates. Similarly, we find that our constraints derived using BBN and CMB data simultaneously are not significantly modified for neutrinophilic particles. The bounds on electrophilic dark sector states, however, can vary moderately when combining BBN and CMB observations. We present updated results for all the relevant light dark sector states, calculated using the rates obtained by the leading groups performing standard BBN analyses.
We constrain the lifetime of thermally produced Heavy Neutral Leptons (HNLs) from primordial nucleosynthesis. We show that even a small fraction of mesons present in the primordial plasma leads to the over-production of the primordial helium. This puts an upper bound on the lifetime of HNLs $tau_{N}<0.02$ s for masses $m_{N}>m_{pi}$ (as compared to 0.1 s reported previously). In combination with accelerator searches, this allows us to put a new lower bound on the HNLs masses and defining the bottom line for HNL searches at the future Intensity Frontier experiments.
From a theoretical point of view, there is a strong motivation to consider an MeV-scale reheating temperature induced by long-lived massive particles with masses around the weak scale, decaying only through gravitational interaction. In this study, we investigate lower limits on the reheating temperature imposed by big-bang nucleosynthesis assuming both radiative and hadronic decays of such massive particles. For the first time, effects of neutrino self-interactions and oscillations are taken into account in the neutrino thermalization calculations. By requiring consistency between theoretical and observational values of light element abundances, we find that the reheating temperature should conservatively be $T_{rm RH} gtrsim 1.8$ MeV in the case of the 100% radiative decay, and $T_{rm RH} gtrsim$ 4-5 MeV in the case of the 100% hadronic decays for particle masses in the range of 10 GeV to 100 TeV.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا