No Arabic abstract
We study a family of real rational functions with prescribed critical points and the evolution of its poles and critical points under particular Loewner flows. The recent work by Peltola and Wang shows that the real locus of these rational functions contains the multiple SLE$(0)$ curves, the deterministic $kappa to 0$ limit of the multiple SLE$(kappa)$ system. Our main results highlight the importance of the poles of the rational function in determining properties of the SLE$(0)$ curves. We show that solutions to the classical limit of the the null vector equations, which are used in Loewner evolution of the multiple SLE$(0)$ curves, have simple expressions in terms of the critical points and the poles of the rational function. We also show that the evolution of the poles and critical points under the Loewner flow is a particular Calogero-Moser integrable system. A key step in our analysis is a new integral of motion for the deterministic Loewner flow.
In this paper we rigorously compute the average multifractal spectrum of harmonic measure on the boundary of SLE clusters.
With the sphere $mathbb{S}^2 subset mathbb{R}^3$ as a conductor holding a unit charge with logarithmic interactions, we consider the problem of determining the support of the equilibrium measure in the presence of an external field consisting of finitely many point charges on the surface of the sphere. We determine that for any such configuration, the complement of the equilibrium support is the stereographic preimage from the plane of a union of classical quadrature domains, whose orders sum to the number of point charges.
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are also SLE in the scaling limit, but with kappa=10/3. To test this, we generate samples using the Wolff algorithm and test them against predictions of SLE: we examine the statistics of the Loewner driving function, estimate the fractal dimension and test against Schramms formula. The results are in support of our hypothesis.
Making use of the method of subordination chains, we obtain some sufficient conditions for the univalence of an integral operator. In particular, as special cases, our results imply certain known univalence criteria. A refinement to a quasiconformal extension criterion of the main result, is also obtained.
We extend the Riemann-Hilbert (RH) method to study the inverse scattering transformation and high-order pole solutions of the focusing and defocusing nonlocal (reverse-space-time) modified Korteweg-de Vries (mKdV) equations with nonzero boundary conditions (NZBCs) at infinity and successfully find its multiple soliton solutions with one high-order pole and multiple high-order poles. By introducing the generalized residue formula, we overcome the difficulty caused by calculating the residue conditions corresponding to the higher-order poles. In accordance with the Laurent series of reflection coefficient and oscillation term, the determinant formula of the high-order pole solution with NZBCs is established. Finally, combined with specific parameters, the dynamic propagation behaviors of the high-order pole solutions are further analyzed and some very interesting phenomena are obtained, including kink solution, anti kink solution, rational solution and breathing-soliton solution.