Do you want to publish a course? Click here

The replacement system of the JUNO liquid scintillator pilot experiment at Daya Bay

93   0   0.0 ( 0 )
 Added by Wenqi Yan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Jiangmen Underground Neutrino Observatory (JUNO), a multi-purpose neutrino experiment, will use 20 kt liquid scintillator (LS). To achieve the physics goal of determining the neutrino mass ordering, 3$%$ energy resolution at 1 MeV is required. This puts strict requirements on the LS light yield and the transparency. Four LS purification steps have been designed and mid-scale plants have been built at Daya Bay. To examine the performance of the purified LS and find the optimized LS composition, the purified LS was injected to the antineutrino detector 1 in the experimental hall 1 (EH1-AD1) of the Daya Bay neutrino experiment. To pump out the original gadolinium loaded LS and fill the new LS, a LS replacement system has been built in EH1 in 2017. By replacing the Gd-LS with purified water, then replacing the water with purified LS, the replacement system successfully achieved the designed goal. Subsequently, the fluorescence and the wavelength shifter were added to higher concentrations via the replacement system. The data taken at various LS compositions helped JUNO determine the final LS cocktail. Details of the design, the construction, and the operation of the replacement system are reported in this paper.



rate research

Read More

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detector size difference between Daya Bay and JUNO, the Daya Bay data were used to tune the parameters of a newly developed optical model. Then, the model and tuned parameters were used in the JUNO simulation. This enabled to determine the optimal composition for the JUNO LS: purified solvent LAB with 2.5 g/L PPO, and 1 to 4 mg/L bis-MSB.
The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $bar{ u}_e$ oscillations over km-baselines. Subsequent data has provided the worlds most precise measurement of $rm{sin}^22theta_{13}$ and the effective mass splitting $Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the worlds most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes (PMTs), the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.
209 - J. Wilhelmi , R. Bopp , R. Brown 2014
We describe the design, installation, and operation of a purification system that is able to provide large volumes of high purity ASTM (D1193-91) Type-I water to a high energy physics experiment. The water environment is underground in a lightly sealed system, and this provides significant challenges to maintaining high purity in the storage pools, each of which contains several thousand cubic meters. High purity is dictated by the need for large optical absorption length, which is critical for the operation of the experiment. The system is largely successful, and the water clarity criteria are met. We also include a discussion of lessons learned.
The Daya Bay Reactor Neutrino Experiment has measured the neutrino mixing angle theta_{13} to world-leading precision. The experiment uses eight antineutrino detectors filled with 20-tons of gadolinium-doped liquid scintillator to detect antineutrinos emitted from the Daya Bay nuclear power plant through the inverse beta decay reaction. The precision measurement of sin^{2}2theta_{13} relies on the relative antineutrino interaction rates between detectors at near (400 m) and far (roughly 1.8 km) distances from the nuclear reactors. The measured interaction rate in each detector is directly proportional to the number of protons in the liquid scintillator target. A precision detector filling system was developed to simultaneously fill the three liquid zones of the antineutrino detectors and measure the relative target mass between detectors to <0.02%. This paper describes the design, operation, and performance of the system and the resulting precision measurement of the detectors target liquid masses.
The Daya Bay Reactor Neutrino Experiment has measured the last unknown neutrino mixing angle, {theta}13, to be non-zero at the 7.7{sigma} level. This is the most precise measurement to {theta}13 to date. To further enhance the understanding of the response of the antineutrino detectors (ADs), a detailed calibration of an AD with the Manual Calibration System (MCS) was undertaken during the summer 2012 shutdown. The MCS is capable of placing a radioactive source with a positional accuracy of 25 mm in R direction, 20 mm in Z axis and 0.5{deg} in {Phi} direction. A detailed description of the MCS is presented followed by a summary of its performance in the AD calibration run.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا