Do you want to publish a course? Click here

The multiphase and magnetized neutral hydrogen seen by LOFAR

68   0   0.0 ( 0 )
 Added by Andrea Bracco
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Faraday tomography of polarimetric observations at low frequency is a unique tool to study the structure of the magneto-ionic interstellar medium (ISM) based on Faraday depth. LOFAR data below 200 MHz revealed a plethora of features in polarization, whose origin remains unknown. Previous studies highlighted the remarkable association of such features to tracers of the magnetized-neutral ISM, as interstellar dust and atomic hydrogen (HI). However, the physical conditions responsible for the correlation between magneto-ionic and neutral media are yet to be clarified. In this letter we investigate further the correlation between LOFAR data and HI observations at 21cm from the Effelsberg-Bonn HI Survey (EBHIS). We focus on the multiphase properties of the HI gas. We present the first statistical study on the morphological correlation between LOFAR tomographic data and the cold (CNM), luke-warm (LNM), and warm (WNM) HI phases, separately. We use the Regularized Optimization for Hyper-Spectral Analysis (ROHSA) approach to decompose the HI phases based on the Gaussian decomposition of the HI spectra. In at least two fields of view -- Fields 3C196 and A -- out of four -- Fields B and C -- we find a significant correlation between LOFAR and EBHIS data using the Histograms of Oriented Gradients (HOG). The absence of correlation in Fields B and C is caused by low signal-to-noise ratio in polarization. The observed HOG correlation in Fields 3C196 and A is associated with all HI phases and it is surprisingly dominant in the CNM and LNM phases. We discuss possible mechanisms that would explain the correlation between CNM, LNM, and WNM, with polarized emission at Faraday depths up to 10 rad m$^{-2}$. Our results show how the complex structure of the ionic medium seen by LOFAR data is tightly related to phase transition in the diffuse and magnetized neutral ISM traced by HI spectroscopic data.



rate research

Read More

Massive, merging galaxy clusters often host giant, diffuse radio sources that arise from shocks and turbulence; hence, radio observations can be useful for determining the merger state of a cluster. In preparation for a larger study, we selected three clusters -- Abell 1319, Abell 1314, and RXC J1501.3+4220 (Z7215) -- making use of the new LOFAR Two-Metre Sky Survey (LoTSS) at 120-168 MHz, and together with archival data, show that these clusters appear to be in pre-merging, merging, and post-merging states, respectively. We argue that Abell 1319 is likely in its pre-merging phase, where three separate cluster components are about to merge. There are no radio halos nor radio relics detected in this system. Abell 1314 is a highly-disturbed, low-mass cluster which is likely in the process of merging. This low-mass system does not show a radio halo, however, we argue that the merger activates mechanisms that cause electron re-acceleration in the large 800 kpc radio tail associated with IC~711. In the cluster Z7215 we discover diffuse radio emission at the cluster center, and we classify this emission as a radio halo, although it is dimmer and smaller than expected by the radio halo power versus cluster mass correlation. We suggest that the disturbed cluster Z7215 is in its post-merging phase. Systematic studies of this kind over a larger sample of clusters observed with LoTSS will help constrain the time scales involved in turbulent re-acceleration and the subsequent energy losses of the underlying electrons.
The first generation of redshifted 21 cm detection experiments, carried out with arrays like LOFAR, MWA and GMRT, will have a very low signal-to-noise ratio per resolution element (sim 0.2). In addition, whereas the variance of the cosmological signal decreases on scales larger than the typical size of ionization bubbles, the variance of the formidable galactic foregrounds increases, making it hard to disentangle the two on such large scales. The poor sensitivity on small scales on the one hand, and the foregrounds effect on large scales on the other hand, make direct imaging of the Epoch of Reionization of the Universe very difficult, and detection of the signal therefore is expected to be statistical.Despite these hurdles, in this paper we argue that for many reionization scenarios low resolution images could be obtained from the expected data. This is because at the later stages of the process one still finds very large pockets of neutral regions in the IGM, reflecting the clustering of the large-scale structure, which stays strong up to scales of sim 120 comoving Mpc/h (sim 1 degree). The coherence of the emission on those scales allows us to reach sufficient S/N (sim 3) so as to obtain reionization 21 cm images. Such images will be extremely valuable for answering many cosmological questions but above all they will be a very powerful tool to test our control of the systematics in the data. The existence of this typical scale (sim 120 comoving Mpc/h) also argues for designing future EoR experiments, e.g., with SKA, with a field of view of at least 4 degree.
We present initial results from the textit{COS and Gemini Mapping the Circumgalactic Medium} (mbox{CGMCGM} $equiv$ CGM$^{2}$) survey. The CGM$^{2}$ survey consists of 1689 galaxies, all with high-quality Gemini GMOS spectra, within 1 Mpc of twenty-two $z lesssim 1$ quasars, all with S/N$sim$10 {emph{HST/COS}} G130M$+$G160M spectra. For 572 of these galaxies having stellar masses $10^{7} M_{odot} < M_{star} < 10^{11} M_{odot}$ and $z lesssim 0.5$, we show that the ion{H}{1} covering fraction above a threshold of NHI$>10^{14} $cm$^{-2}$ is $gtrsim 0.5$ within 1.5 virial radii ($R_{rm vir} sim R_{200m}$). We examine the ion{H}{1} kinematics and find that the majority of absorption lies within $pm$ 250 km s$^{-1}$ of the galaxy systemic velocity. We examine ion{H}{1} covering fractions over a range of impact parameters to infer a characteristic size of the CGM, $R^{14}_{rm CGM}$, as a function of galaxy mass. $R^{14}_{rm CGM}$ is the impact parameter at which the probability of observing an absorber with NHI $>$ 10$^{14}$ cm$^{-2}$ is $>$ 50%. In this framework, the radial extent of the CGM of $M_{star} > 10^{9.9} M_{odot}$ galaxies is $R^{14}_{rm CGM} = 346^{+57}_{-53}$ kpc or $R^{14}_{rm CGM} simeq 1.2R_{rm vir}$. Intermediate-mass galaxies with $10^{9.2} < M_{star}/M_{odot} < 10^{9.9}$ have an extent of $R^{14}_{rm CGM} = 353^{+64}_{-50}$ kpc or $R^{14}_{rm CGM} simeq 2.4R_{rm vir}$. Low-mass galaxies, $M_{star} < 10^{9.2} M_{odot}$, show a smaller physical scale $R^{14}_{rm CGM} = 177_{-65}^{+70}$ kpc and extend to $R^{14}_{rm CGM} simeq 1.6R_{rm vir}$. Our analysis suggests that using $R_{rm vir}$ as a proxy for the characteristic radius of the CGM likely underestimates its extent.
One of the key science drivers for the development of the SKA is to observe the neutral hydrogen, HI, in galaxies as a means to probe galaxy evolution across a range of environments over cosmic time. Over the past decade, much progress has been made in theoretical simulations and observations of HI in galaxies. However, recent HI surveys on both single dish radio telescopes and interferometers, while providing detailed information on global HI properties, the dark matter distribution in galaxies, as well as insight into the relationship between star formation and the interstellar medium, have been limited to the local universe. Ongoing and upcoming HI surveys on SKA pathfinder instruments will extend these measurements beyond the local universe to intermediate redshifts with long observing programmes. We present here an overview of the HI science which will be possible with the increased capabilities of the SKA and which will build upon the expected increase in knowledge of HI in and around galaxies obtained with the SKA pathfinder surveys. With the SKA1 the greatest improvement over our current measurements is the capability to image galaxies at reasonable linear resolution and good column density sensitivity to much higher redshifts (0.2 < z < 1.7). So one will not only be able to increase the number of detections to study the evolution of the HI mass function, but also have the sensitivity and resolution to study inflows and outflows to and from galaxies and the kinematics of the gas within and around galaxies as a function of environment and cosmic time out to previously unexplored depths. The increased sensitivity of SKA2 will allow us to image Milky Way-size galaxies out to redshifts of z=1 and will provide the data required for a comprehensive picture of the HI content of galaxies back to z~2 when the cosmic star formation rate density was at its peak.
82 - Han-Seek Kim 2016
The formation and evolution of galaxies with low neutral atomic hydrogen (HI) masses, M$_{rm HI}$$<$10$^{8}h^{-2}$M$_{odot}$, are affected by host dark matter halo mass and photoionisation feedback from the UV background after the end of reionization. We study how the physical processes governing the formation of galaxies with low HI mass are imprinted on the distribution of neutral hydrogen in the Universe using the hierarchical galaxy formation model, GALFORM. We calculate the effect on the correlation function of changing the HI mass detection threshold at redshifts $0 le z le 0.5$. We parameterize the clustering as $xi(r)=(r/r_{0})^{-gamma}$ and we find that including galaxies with M$_{rm HI}$$<$10$^{8}h^{-2}$M$_{odot}$ increases the clustering amplitude $r_{0}$ and slope $gamma$ compared to samples of higher HI masses. This is due to these galaxies with low HI masses typically being hosted by haloes with masses greater than 10$^{12}{h}^{-1}$M$_{odot}$, and is in contrast to optically selected surveys for which the inclusion of faint, blue galaxies lowers the clustering amplitude. We show the HI mass function for different host dark matter halo masses and galaxy types (central or satellite) to interpret the values of $r_{0}$ and $gamma$ of the clustering of HI-selected galaxies. We also predict the contribution of low HI mass galaxies to the 21cm intensity mapping signal. We calculate that a dark matter halo mass resolution better than $sim$10$^{10}{h}^{-1}$M$_{odot}$ at redshifts higher than 0.5 is required in order to predict converged 21cm brightness temperature fluctuations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا